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Is Artesunate the Best Partner of Gemcitabine in

Pancreatic Cancer?

Tomas Koltai

ABSTRACT

Pancreatic adenocarcinoma (PDAC) is still one of the most malignant and
difficult to treat cancers. The therapeutic protocols in use, such as
gemcitabine, gemcitabine associated with nab-paclitaxel and/or cisplatin
or the FOLFIRINOX scheme have added very little to PDAC outcome. It
is clear by now, that none of them can do the job alone. The more than
3,300 trials registered in clinicaltrials.gov is the best proof that research
has not yet found an adequate response to tackle this disease. Thus, an
innovative search is badly needed. As part of this investigation we came
across a phytotherapeutic product that has been very successful for the
treatment of falciparum- and vivax- caused malaria: artemisinin
derivatives. These derivatives showed very low toxicity for humans and
have been tested in millions of patients with paludism.

Interestingly, they have also shown important anti-cancer properties.
Regarding PDAC in particular there is strong evidence supporting not
only an additive effect to gemcitabine without a concomitant increase in
human toxicity, but also decreased resistance. This mini-review will
discuss the evidence showing that artemisinin derivatives can be the best
possible association with gemcitabine for PDAC chemotherapeutic
treatment.
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I. INTRODUCTION

Exocrine pancreatic cancer and pancreatic ductal
adenocarcinoma (PDAC) in particular, is one of the most
difficult malignancies to treat, with poor therapeutic response
and short overall survival [1]. The incidence of pancreatic
cancer is on the rise [2], [3]. The tumor becomes resistant to
gemcitabine and to the FOLFIRINOX scheme, usually the
first line protocols [4], [5], very soon. Thus, a new approach
is urgently needed. Consulting the clinicaltrials.gov internet
page (April 2022) using pancreatic cancer as the search
criteria, 3,172 studies in different phases were found. If the
search is restricted to pancreatic adenocarcinoma we find
1073 trials. Such an abundance of research may be clear proof
that we are still far away from an effective approach.
Treatment of different cancers has significantly improved in
the last twenty years. This is not the case of PDAC. The anti-
metabolite gemcitabine is the gold standard for the first line
treatment; however, the response rate is low and overall
survival has only improved minimally. The main reason for
this failure is intrinsic or early-acquired resistance. It is quite
evident that gemcitabine alone is unable to do the job. 911
clinical trials (clinicaltrials.gov) and the very low 5 year
survival are the proof of concept that gemcitabine needs to be
improved somehow. On the other hand, there is a group of
drugs that have been highly successful in the treatment of
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malaria, artemisinin derivatives, which have shown
significant anti-cancer activity in vitro and in vivo.
Interestingly, these drugs were also found to be active against
pancreatic cancer. The aim of this review is to analyze and
discuss a possible partnership between artemisinin
derivatives and gemcitabine for the treatment of pancreatic
cancer.

II. ARTEMISININ DERIVATIVES

A. Historical Background

“Take one bunch of Qinghao, soak in two sheng of water,
wring it out to obtain the juice and ingest it all”, this comes
from TheHandbook of Prescriptions for Emergency
Treatments for intermittent fever therapy. The interesting
point is that this handbook was written in 340 AD by Ge Hong
(also known as Ko Hung 283-343 AD), and intermittent fever
was the ancient term used for malaria. But even more
interesting is that such an old remedy and its description was
fished out of Traditional Chinese Herbal Medicine and was
studied in depth by a Chinese phytochemist Tu YouYou in
the 1970s as part of a top -secret Chinese government project
(Project 523) for the treatment of malaria [6], [7]. For a
detailed description of how the discovery took place, read [8].

The work of Tu YouYou’s team finally led to the discovery
of artemisinin (ART) and its derivatives (ARTs), which are
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considered the most powerful anti-malarial drugs available
today. In spite of this major discovery, according to modern
Western standards, traditional Chinese herbal therapy is
considered to use inadequate methodologies, and its
effectiveness poorly documented [9]. Undoubtedly, ART
represents the exception. Reference [10] described how this
rediscovery of artemisinin happened: her team investigated
more than 2,000 Chinese herbal preparations identifying 640
possible candidates for anti-malarial activity. Artemisia
annua extracts showed promising results but they faced
problems in the purification and extraction methods, until
they found the above-mentioned Handbook of Prescriptions
for Emergencies. The form of preparation described by Ge
Hong gave Tu YuoYuo the idea that the problems she found
were due to the excessive heat employed in the extraction
process which destroyed the active components. This time
they used a “cold” extraction method, and ART was reborn
against malaria [10]. Traditional Chinese medicine has
successfully used the herb Artemisia annua against malaria
since ancient times [11].

Nowadays, ARTs are well established anti-malarial agents
with  excellent safety profiles.  Artemisinin-based
combination therapies are recommended by the World Health
Organization (WHO) as the first-line treatment for
uncomplicated falciparum malaria in all areas where the
disease is endemic [12] (updated in 2022 [13])[14]. ART and
ARTs have shown interesting anti-cancer effects that are in
the initial stage of clinical evaluation.

B. Chemistry

ART was isolated and purified in 1972 and the chemical
structure became known in 1979. The amount of ART
obtained from Artemisia annua is very low (less than 0.1%).
ART is poorly soluble in oil and water, and it has a short
plasma life. Therefore, nowadays ART is not the drug used to
treat malaria, because it has been replaced by its derivatives
which are more hydrophilic or more lipophilic. They are
obtained from the parent compound and are 8 to 10 times
more effective in the treatment of malaria [15]. ART
derivatives like artesunate (ARS) and dihydroartesunate
(DHA) are hydrophobic and partition into biological
membranes; arthemeter and artheeter are oil soluble while
sodium artesunate and sodium artelinate are water soluble.
(For an extensive review of the chemistry of ARTs read [16].
Ultrastructural studies of parasites treated with ART and its
derivatives show that the drug is mainly present in the
parasite membranes together with alterations in ribosomal
organization and endoplasmic reticulum. The affected
membranes include the limiting membrane, digestive vacuole
membranes, the nuclear envelope, endoplasmic reticulum,
and mitochondrial membranes. Thus, the ARTs localize in
specific parasite membranes and lead to a total
disorganization of the parasite’s ultrastructure including
disappearance of ribosomes with protein synthesis inhibition
[17], [18].

Artemisinin is a sesquiterpene lactone with an
endoperoxide. The endoperoxide bridge is essential for
ART's cytotoxic activity [19]. The carbonyl group of
artemisinin can be reduced to form a more soluble compound:
dihydroartemisin (DHA). DHA is the scaffold on which many
derivatives have been synthesized.
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Fig.1. Chemical formula of artemisinin showing the endoperoxide bridge.
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C. Mechanism of Action

To understand how ART and ARTs might work in cancer,
it is necessary to examine first how they work against
Plasmodium falciparum and vivax, and related parasites,
although this mechanism of action has not been fully
elucidated. The endoperoxide link and heme iron are key
players in ART and ARTs’ anti-malarial actions. The clearest
and simplest mechanism of action was proposed by [11].
They suggested that the activation of ART was triggered by
iron molecules generating toxic free radicals.

Reference [20] determined that endoperoxides like ART
and its derivatives interfere with the plasmodial hemoglobin
catabolic pathway and inhibit heme polymerization. The
endoperoxide ring was essential to this activity.

The mechanism of free radical formation seems to be a
two-step process:

e The iron contained in heme molecules breaks down
the endoperoxide structure of ART generating an oxy
free radical which then produces a carbon-centered
free radical;

e This carbon-centered free radical acts as a protein
alkylating agent interfering with essential proteins
[21], [22].

ART and its derivatives also inhibit exported protein 1
(EXP1), a membrane glutathione S-transferase [23]. There
are controversial reports about ART and derivatives targeting
SERCA la. (sarcoplasmic/endoplasmic reticulum Ca2+-
ATPase 1a) [24], [25].

In summary the proposed mechanisms for the anti-malarial
actions of ARTs, are [26], [27]:

e The heme-iron hypothesis explained above;

e Reaction with a histidine-rich protein of parasites;
e SERCA-1a inhibition;

e  Disruption of mitochondrial membrane potential.

In [28] discussed the mechanism of action of artemisinin
derivatives along the above lines, but no clear conclusion was
reached and they stated that: “The debate continues”. The
debate continued until 2012 when [29], [30] explained a new
cell death mechanism: ferroptosis.

1) Ferroptosis

Ferroptosis is a regulated form of cell death dependent on
iron and characterized by lipid peroxidation that produces an
accumulation of lipid peroxides leading to cell toxicity and
death which is different from apoptosis. This is a
consequence of the decreased/lost activity of the enzyme
glutathione peroxidase 4 (GPX4) that is unable to
repair/prevent lipid peroxidation leading to the formation of
toxic products such as lipid-based reactive oxygen species
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[31], [32].

Artemisin and its derivatives have been found to be
ferroptotic inducers [33].

Although ferroptosis is one of the main mechanisms
involved in cancer cell killing by ARS, it is not the only one.

2) Mechanisms Involved in Anticancer Effects

The mechanisms that may explain the inhibitory action on

cancer progression by ARTs have been postulated:

e Ferroptosis through a similar mechanism found
against Plasmodium genre organisms, ART and
derivatives, with the intervention of intracellular iron
molecules, produce carbon-centered free radicals with
cytotoxic effects [34]. This would explain apoptosis in
the malignant cells with minor adverse events in
normal cells, because while the intracellular content of
iron is high in tumors [35], [36], it is significantly
lower in normal cells. This also means that malignant
cells that overexpress transferrin receptor molecules
are particularly susceptible to ART and derivatives
[37]. Furthermore, high expression of hepcidin and/ or
low expression of ferroportin, both situations lowering
intracellular iron, are signs of poor prognosis in
pancreatic cancer [38]. However, this mechanism
seems insufficient to explain all the anti-cancer effects
of ART. In summary Artemisinin derivatives kill cells
by reacting with iron to form free radicals, and iron
plays a double role by favoring tumor progression [39]
but on the other hand killing the cell when artemisinin
derivatives are administered.

e  Anti-angiogenesis [40]-[45]. The mechanism seems to
be down-regulation of VEGF (vascular endothelial
growth factor) and vascular endothelial growth factor

receptor [46].

e Anti-lymphangiogenesis by suppression of VEGF-C
[47].

e Interference or inhibition of pro-proliferative proteins
such as:

a) Interference with Spl binding to the CDK 4 gene
promoter decreasing CDK4 transcription [48].

b) Down-regulation of the transcription factor E2F1
which interferes with CDK2 promoter activity [49].

c¢) Alkylation of  other  significant  proteins
(approximately 5 to 18% of ART added to a cell
culture bound with catalase, cytochrome c¢ and
hemoglobin but not to DNA) [50].

e Down-regulation of matrix metalloproteinase-9
(MMP-9). MMP-9 is not only produced by cancer
cells, but also by macrophages and fibroblasts
adjacent to the tumor. The extracellular matrix
metalloproteinase inducer (EMMPRIN), also
known as CD147 or basigin, located on the surface
of tumor cells induces adjacent macrophages,
fibroblasts, and endothelial cells to produce MMPs.
ART and ART derivatives down-regulate
EMMPRIN and therefore decrease MMP-9
production [51].

e Down-regulation of the Wnt/B catenin pathway. The
Wnt/B catenin pathway plays an important role in
colorectal cancer due to the loss of the APC gene
[52], but its role in PDAC has not been clearly
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established [53]. However, it is one of the players in
pancreatic cancer resistance [54], [55]. Artesunate
has shown abilities to down-regulate the Wnt/B
catenin pathway in gastrointestinal tumors [56].

e Immunomodulation. ARTs decrease
immunosuppression in CRC cells by decreasing
TGF-B1 and IL-10 [57].

e Inhibition of mTORCI1 signaling in
rhabdomyosarcoma at clinically achievable
concentrations [58] and also in nasopharyngeal
carcinoma [59].

e DNA genotoxic activity. ARTs produce double
strand breaks [60], [61] due to oxidative stress.

e Decreasing the mitochondrial membrane potential
and intracellular ATP concentration in various cell
lines in a dose dependent manner [62] thus
modulating  multidrug  resistance at  the
mitochondrial/apoptotic level, but not at the P-gp or
MRP1 in adriamycin-resistant cells.

e ARTs anti-tumoral activity is not modified by the
expression of MDR proteins. ARTs treatment of
multidrug-resistant cells expressing MDR1, MRP1,
or BCRP showed that there was no cross-resistance
with other chemotherapy drugs [63].

e Inhibition of the PI3K/AKT axis. Artesunate was
found to inhibit this axis in experimental allergic
asthma [64], human rheumatoid arthritis [65],
human cervical carcinoma [66], oral squamous cell
carcinoma [67].

e Inhibition of complex I and II of the electron
transport complex, thus generating important
oxidative stress [67] which is proportional to the
oxidative metabolism present in the tumor.

e Inhibition of lipid synthesis. [68] showed that ARTs
were able to inhibit fatty acid synthesis in colorectal
cancer cells.

Due to all these effects, and the minimal toxicity for normal
cells ARTs can be considered cancer chemotherapeutic drugs
[69].

III. ARTIMISININ DERIVATIVES IN CANCER

In 1993, [70] working with Ehrlich ascitis cells were the
first to describe the cytotoxicity of artemisinins on tumor
cells. However, there are earlier Chinese publications in this
same sense [71]. In 1994, [72] tested the cytotoxic activity of
different compounds isolated from Artemisia annua in vitro.
He found that ART showed a significant activity against 5
different tumor cell lines. This was the beginning of the idea
that ART may have anti-cancer activity [73].

Anti-cancer effects were confirmed in different tumors
such as:

A. Oral Squamous Cancer Cells

ART and its derivatives were tested against oral cancer
cells by [74] who found that deoxoartemisinin trimer had the
most potent cytotoxic and growth inhibiting effect, which was
even more powerful than paclitaxel, SFU and cisplatin on
YD-10B oral cancer cells.
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B. Laryngeal Squamous Cell Carcinoma

There is a case report of a patient with squamous cell
laryngeal carcinoma with lymph node metastasis who was
treated with ARS (I'V and oral) and ferrous sulfate. The tumor
and the lymph nodes significantly decreased in size after two
months of treatment and the patient was stable after 9 months
[75].

C. Leukemia Cells

Myeloid leukemia K562 cells underwent autophagy and
cell cycle arrest when treated with DHA. Iron was an essential
component for these effects [76]. Artennuin B derivatives are
active against leukemia P 388 cells in vitro [77]. In acute
myeloid leukemia cells, ART and DHA showed selectivity
against mixed lineage leukemia rearrangements and
mutations of FLT3-ID. Synergy with ARA-C was also
observed [78], and ART derivative dimers were particularly
powerful against leukemia cells [79]. Furthermore, ART was
able to induce ROS-mediated apoptosis in doxorubicin-
resistant leukemia cells [80] and reduce stemness [81].

D. B Cell Lymphoma (CD20 +) Cells

ARTs showed synergistic cytotoxic effects with rituximab
[82], and suppressed growth of malignant cells without
affecting the normal ones, by inducing a powerful
endoplasmic reticulum stress [83]. Lymphoma and myeloma
cells are highly sensitive to ARTS-induced apoptosis [84].

E. Prostate Cancer Cells

DHA and two different dimers were used on prostate
cancer cell lines. The C4-2 and LNCaP cell lines showed
increased apoptosis and growth arrest. No significant changes
were observed in DU 145 cells [85]. Reference [48] showed
that the mechanism of action in prostate cancer cells was due
to interference with the Spl transcription factor and [86]
found that artesunate was able to inhibit the androgen
receptor.

F. Breast Cancer Cells

MCF7, an estrogen responsive cell line, treated with ART
showed decreased progression of the hormonally induced
estrogen-stimulated cell cycle. ART also down-regulated ER
a protein and transcripts and it acted synergistically with
fulvestran [87]. ART inhibited proliferation and produced G1
cell cycle arrest in these cells. Proliferative proteins of the cell
cycle (CDK2, CDK4, cyclin E, cyclin D1 and E2FI
transcription factor) were all decreased [88]. ART was also
effective against triple-negative breast cancer cell lines [89].
Reference [90] showed that ARS cytotoxic activity on breast
cancer cells was a consequence of apoptosis induced by the
inhibition of HSP70 ATPase.

G. Lung Cancer (NSCLC)

DHA has shown marked activity against the human lung
adenocarcinoma cell line A549, in vitro and in vivo [91].
Akt/GSk3 B/cyclin DI was one of the down-regulated
pathways [92]. ARS increased radiosensitivity of NSCLC
[93] and decreased EGFR expression [94]. Reference [95]
described ARS effects against migration, invasion, and
metastasis in vivo and in vitro: decreased expression of MMP-
2 and MMP-7 and uPA promoter/enhancer actions. /n vivo
metastases were considerably diminished. Inhibition of
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autophagy with chloroquine increased apoptosis of lung
cancer cells in vitro by ROS increase [96]. A clinical
experiment with 120 patients (60 treated with ARS plus
vinorelbine and cisplatin and 60 with the same treatment but
without ARS) showed no significant difference between the
two groups in short-, medium-, and long-term survival, but
there was a significant difference in progression-free survival
which was higher in the ARS treated group [97].

H. Melanoma

Two cases of metastatic uveal melanoma were treated with
ARS as adjuvant treatment. Neither of the two cases
responded to standard chemotherapy. One of the patients
presented a temporary response, but the other showed a
regression of metastasis and was alive after 47 months [98].
ART decreased human melanoma cell migration through
down-regulation of alpha V beta 3 integrin and
metalloproteinase-2 [99]. DHA targets metastatic melanoma
cells by up-regulating the apoptotic protein NOXA without
affecting normal melanocytes [100]. ARS decreased
melanoma progression by blocking STAT3 signaling [101]
and inhibited vasculogenic mimicry in choroidal melanoma
[102].

1. Metastatic Renal Cell Carcinoma (mRCC)

When ARS was tested against different human RCC cell
lines it showed potent cytotoxicity and increased the
malignant cells' sensitivity to sorafenib in vitro. Cytotoxicity
correlated with expression of transferrin receptors [103].
Furthermore, ARS inhibited growth of sunitinib-resistant
renal cancer cells [104], [105]. Importantly, artesunate
showed antiangiogenic effects which is an important factor in
a tumor such as mRCC which is highly dependent on
angiogenesis [106].

J. Hepatocarcinoma

Reference [107] tested ART and derivatives against
different lines of hepatoma cells (HepG2, Huh-7, BEL-7404,
and Hep3B), and a normal human liver cell line, and found
Gl arrest in malignant cells. They observed greater
cytotoxicity in hepatoma cells and markedly less in normal
cells. Proliferation was significantly decreased with Gl
arrest, decreasing all proteins related to proliferation and a
significant increase in pro-apoptotic proteins. ART and DHA
inhibited tumor growth in mice implanted with HepG2 and
Hep3B xenograft tumors. These results were achieved in
normal and altered P53 cells. The important issue is that ART
and derivatives were toxic for malignant cells but did not
affect the normal hepatic cells used as controls. Cytotoxicity
for hepatocarcinoma cells has been confirmed by many
authors [108]-[119].

K. Colorectal Cancer (CRC)

There is strong evidence at different levels (laboratory and
clinical settings) showing ARTs beneficial effects in
colorectal carcinoma. In a double-blind randomized trial with
artesunate given preoperatively to 20 patients with CRC (9
received artesunate and 11 in the control group were given
placebo), after a median follow up of 42 months only 1 patient
in the artesunate group showed recurrence, while 6 patients
in the placebo group had a relapse [120]. The number of
patients included in this protocol was small, and the drug was
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only administered during the two weeks before surgery.
Nevertheless the difference in the recurrence rate between
treated and placebo controls is quite significant. At the
clinical level, this experiment, showed not only a decrease in
recurrence rate in patients receiving preoperative ARS but
also that all the patients who were given ARS in the
preoperative period were alive at the time the paper was
published while mortality in the control group was 30%. At
the cell level, [121] found that ARS decreased the growth of
human colorectal carcinoma and inhibited the over-expressed
Wnt/B-catenin pathway. DHA reduced colorectal cancer cell
viability in a significant manner inducing accumulation of
ROS (reactive oxygen species) and apoptosis through the
mitochondrial-caspase pathway [122]. Another mechanism
involved in DHA-dependent apoptosis is endoplasmic
reticulum stress which results from SERCA inhibition [123].
Reference [63] found that the highest responsiveness to ARTs
anti-cancer activity was in colon cancer and leukemia cell
lines. Colon cancer cells have the ability to produce
immunosuppression which disables natural immunologic
defenses. Artesunate can reverse this process in colon cancer
cell lines (Colon26 and RKO colorectal cancer cells) by
decreasing expression of TGF-B1 and IL-10 [57]. There is a
relation between drug sensitivity and colon cancer phenotype:
the more undifferentiated tumors are more susceptible to
ARS cytotoxicity. It is a well accepted concept that hypoxia
is a common cause of treatment failure and resistance to
chemoradiotherapy. DHA applied to colorectal cancer cells
showed that it was able to induce apoptosis even under
hypoxic conditions.Mitochondrial cytochrome c¢ pathway
was the apoptotic direction induced by DHA under normoxic
conditions whereas under hypoxia, DHA induced a caspase-
independent apoptosis-like cell death. Recently, [124]
synthesized new  thymoquinone-artemisinin  hybrid
molecules, one of which had strong activity, even superior to
the effects of 5-FU, against colorectal cancer cells.

L. Retinoblastoma

Reference [125] found ART specific cytotoxicity against
RB cells, with low toxicity in normal retina cells.

M. Ovarian Cancer

Reference [126] synthesized a melfalan-artemisinin
conjugate that showed significant cytotoxicity against
ovarian cancer cells and had low toxicity against normal cells.
The cytotoxicity of the conjugate was significantly superior
to that found with each component separately. Reference
[127] found that DHA inhibited the proliferation of ovarian
cancer cells in vitro, and also reduced migration and invasion.
There was also a significant reduction of metastasis in vivo in
a xenograft mouse model.

N. Glioblastoma

DHA showed synergistic action with temozolomide on 10
different glioblastoma cell lines. The mechanism of action in
these cases seemed induction of autophagy. This activity was
observed in vitro and in vivo [128]. ARS increased the
cytotoxic effect of temozolomide in glioblastoma cell lines
[129], and sensitized cells to radiotherapy [130]. DHA
inhibited glioma invasiveness [131].
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O. Thyroid Carcinoma

Reference [132] found strong anti-proliferative effects of
ARS in medullary thyroid carcinoma cells and in chemo
resistant anaplastic thyroid cancer [133]. It inhibited
proliferation, migration, and invasion by targeting the
P13K/AKT pathway [134].

P. Gastric Cancer

ART showed inhibition of proliferation of gastric cancer
cells with up-regulation of p53, p27 kip! and p21 kip1 [135].
It also showed growth inhibition and apoptosis [136] by
inhibiting COX2 [137].

Q. Osteosarcoma Cells

ARTs reduce proliferation and metastasis while increasing
apoptosis [138], [139]. ARS showed selective activity against
osteosarcoma in vivo and in vitro through the intrinsic
apoptotic pathway and in a dose- and time-dependent manner
[140]. DHA was active against human [141] and canine [142]
osteosarcoma cell lines. Inhibition of the Wnt/ catenin
pathway plays a role in DHA anti-cancer activity in
osteosarcoma cells [143].

R. Rhabdomyosarcoma

Reference [144] found that DHA inhibited proliferation
and showed a pro-apoptotic effect in rhabdomyoma cells
blocking the mTORCI1 signaling pathway at clinically
achievable concentrations. Similar effects were found in
embryonal thabdomyosarcoma cells in vivo [145].

S. Kaposi's Sarcoma

ARS inhibited growth and angiogenesis in vivo [146].
Kaposi's sarcoma is of endothelial origin and artesunate
inhibited growth of Kaposi's sarcoma cell cultures and of the
HUVECs (human vascular endothelial cells) used as controls.
But while Kaposi's sarcoma cells underwent apoptosis,
HUVECs did not. Artesunate also inhibited the growth of
Kaposi's cells xerotransplanted into nude mice.

T. Gall Bladder Cancer Cells

ARS decreased proliferation and increased apoptosis
(increasing mitochondrial C cytochrome release) in gall
bladder cancer cells. p-ERK1/2, CDK4 and cyclin D1 were
down-regulated [147].

The evidence discussed above shows that ARTs exert anti-
cancer effects in all kinds of malignant tissues. This long,
however, incomplete list of anti-cancer activities exerted by
ARTS deserves research on its potential effects on pancreatic
cancer, where therapeutic resources are feeble and where new
treatment options are so needed.

Only ten clinical trials with ART derivatives in cancer were
found at www.clinicaltrials.gov as of April 2022.

It is of note that no studies were found regarding pancreatic
cancer.

IV. ARTEMISIN DERIVATIVES AND PANCREATIC CANCER

In this regard, ARTs have shown substantial experimental
activity against pancreatic cancers and may not only be an
interesting complement to treatment, but a player in reversing
resistance as well.

There is abundant evidence of the potential benefits of
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ARTS in pancreatic cancer treatment:

1.

In 2009, [148], [149] showed that DHA had the ability to
inhibit growth of pancreatic cancer cells in vitro and in
vivo (subcutaneous BxPC3 cells in mice). DHA reduced
the ratio of Bcl-2/Bax and increased caspase-9 activation
thus inducing apoptosis in a dose-dependent manner.

In a further study [150], this same group confirmed their
findings and showed that DHA inhibited NF-kB nuclear
translocation and DNA binding in a dose-dependent
manner.

These findings were further confirmed by [151], namely
NF-KB pathway down-regulation and apoptotic effects
of DHA in pancreatic cancer in vitro and in vivo.
Importantly, they found that DHA potentiated
gemcitabine’s anti-tumor effects. According to the
authors, this may be produced by the fact that DHA
prevents gemcitabine-induced NF-kappaB activation.
Anti-angiogenesis was also one of the mechanisms
described in its action on the pancreas [152].
Cooperation between gemcitabine and DHA achieving
additive effects was found by [153] in vitro and in vivo.
DHA induced apoptosis through up-regulation of the
death receptor 5 (DRS) [154]. Compared with single-
agent treatment, DHA associated with Apo2L/TRAIL
increased therapeutic efficacy enhancing apoptosis in
vitro. Significant reactive oxygen species (ROS)
generation was involved in the process. Probably
lipooxidation and ferroptosis were also involved,
however, at the time of this report this concept was not
fully known.

Confirming ART’s ability to induce growth arrest and
apoptosis in pancreatic cancer cells Reference [155]
added interesting new findings. It

(a) was more effective in poorly differentiated cells;
(b)enhanced gemcitabine’s cytotoxicity;

(c) significantly inhibited topoisomerase Ila;

(d) activated caspase 3 and 7;

() down-regulated ribonucleotide reductase M2, a
frequent player in gemcitabine resistance;

(f) up-regulated GADDS53 (DNA-damage-inducible
transcript 3) which plays an important role in growth
arrest and apoptosis;

(g) down-regulated PCNA (proliferating cell nuclear
antigen);

(h) up-regulated the pro-apoptotic gene NAG1 (NSAID
activated gene 1).

ARTs concentrations used in the experiments mentioned
above are all within the range that can be achieved in
patients treated for malaria [156].

Reference [157] found that artesunate was able to induce
ferroptosis in pancreatic cancer cells. The drug did not
affect normal pancreatic cells and cytotoxicity was
higher in constitutively-active KRAS cell lines.
Furthermore, ferroptosis inhibitors abrogated cell death.
Importantly, KRAS is usually a driver gene/protein of
PDAC (95% of mutated active KRAS is found in
PDAC:s) [158]. Sotorasib has been FDA approved as a
KRAS inhibitor for lung cancer. On a theoretical basis
we may presume that it may show additive effects with
ARTs. However, effectiveness of sotorasib is limited to
patients with p G12C KRAS mutation [159], which is not
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frequently found.

9. Reference [160] showed that ARTs were effective in
pancreatic cancer cell killing in vitro and in vivo. This
finding was further confirmed by [161].

10. Furthermore, [162] found that ARTs were able to induce
ferroptosis in KRAS mutated pancreatic cancer cells.
GRP78 (78 kDa glucose-regulated protein) was found to
be an important inhibitor of artesunate-induced
ferroptosis. GRP78 is frequently increased in PDAC
[163] exerting pro-tumoral effects [164], [165] and
chemoresistance [166]. Thus, inhibiting GRP78
represents an appropriate facilitator for pancreatic cancer
treatment [167], [168]. Actually, it is the cell membrane
GRP78 that needs to be targeted and there are many
drugs that can bind or inhibit it, such as the BCR/ABL
inhibitors imatinib and dasatinib, the antibiotic
ceftriaxone, pemetrexed, sorafenib, zafirlukast,
leucovorin, olaparib, among many others [ 169].

11. Triptolide, a natural compound consisting of three epoxy
groups of diterpene lactone has shown potent anti/cancer
effects in PDAC cells. When associated with artesunate
the anticancer effects are synergistically increased [170].
Triptolide is excessively toxic and has been replaced by
a more water soluble derivative minnelide for
experimental purposes.

12. Ferroptosis is probably the main mechanism of the
PDAC anti-cancer activity of artesunate, and probably
this is in addition to apoptosis. Thus drugs that can
induce ferroptosis can probably play an important role in
the treatment of the disease. Reference [171] proposed
two drugs to achieve ferroptosis: artesunate and
zalsitabine (an anti HIVdrug). The production of a
considerable amount of reactive oxygen species in
pancreatic cancer cells by artesunate, and leading to a
non-apoptotic cell death has been confirmed by many
authors [172], [173].

13. According to [174], artesunate downregulates pancreatic
cancer cells growth and metastatic potential but at the
same time increases the expression of angiogenic genes.

V. DISCUSSION

PDAC is still a wide-open problem. The main treatment
approach — surgery — is only possible in less than 20% of
patients. Furthermore, the tumor usually relapses within two
years.

Non surgical cases have a very short survival in spite of
chemotherapy. Gemcitabine as a stand-alone, or associated
with nab-paclitaxel or cisplatin has not shown a real
breakthrough regarding overall survival. The FOLFIRINOX
scheme, although minimally more effective, introduced a
slightly longer survival (in the range of weeks rather than
months) at the price of high toxicity and multiple adverse
events that negatively impact quality of life. However,
gemcitabine remains the gold standard for this disease. It is
evident that for longer and better-quality survival,
gemcitabine needs to be "helped" somehow, beyond cisplatin
and/or nab-paclitaxel. It is in this point where derivatives of
artemisinin can play a role. Anti-malarial ARTs’ diverse anti-
cancer properties have been known for nearly 30 years ARTs
benefits in cancer are tissue and tumor dependent to a certain
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extent. In this review we examined the potential of ARTs
complementing gemcitabine and increasing its effects in
PDAC.

One of gemcitabine’s problems is that not all the patients
are responsive to the treatment and those who respond
become resistant after a short time. ARTs can probably
modify this situation.

For example, gemcitabine resistance in many cases is
related to the activity of the MDR proteins that extrude the
drug and/or decrease pro-apoptotic proteins. On the other
hand, without fundamentally MDR proteints, ARTs, use a
different mechanism to cause cell death: ferroptosis. This
programmed cell death relies on an oxidative stress that
induces lipid peroxidation and a high level of free oxygen
radicals that unleash a caspase-independent cell death.
Furthermore, no cross resistance was found between ARTs
and standard chemotherapeutic drugs. Ferroptosis is the
product of ARTs endoperoxide bridge reductive cleavage,
reacting with an iron atom and forming free radicals [175]-
[177]. Since cancer cells have a significantly higher
intracellular iron content, they are more susceptible to ARTs
cytotoxicity.

Fig. 2 explains the possible cooperation between
gemcitabine and ARTs.

In 1998, [178] showed that an intracellular concentration
of HxO2 of around 50 pM induced caspase-dependent
apoptosis. Higher concentrations produced caspase-
independent necrosis. Importantly, if the cells were treated
with antioxidants, neither apoptosis nor necrosis occurred.

Reference [179] found gemcitabine to be an inducer of
NADPH oxidase that increases ROS production, confirming
previous reports in this regard. ROS production by
gemcitabine has two undesirable effects:

1. It increases antioxidant synthesis [180] that prevents

further apoptosis or necrosis;

2. Itincreases CXCR4 expression that induces migration
and invasion [181].

While it is trying to annihilate the tumor, gemcitabine "is

the cause of its own disgrace". Here Artesunate can help:

1. Artesunate impedes the production of antioxidants by
inhibiting GPX4 (glutathione peroxidase 4) [182];
GPX4 is the lipid repair enzyme that corrects lipid
peroxidation. Its inhibition creates lipid-based reactive
oxygen species.

2. Induces an extreme redox stress that causes a
programmed cell death different from apoptosis:
ferroptosis.

Ribonucleotide reductase (RNR) is a key enzyme in DNA
synthesis; by catalyzing the conversion of ribonucleotides
into deoxyribonucleotides, it provides diphosphate
deoxyribonucleides as precursors for DNA. Therefore it is
essential for tumor growth and proliferation [185]-[187]. One
of the anti-cancer effects of gemcitabine is that it inhibits
RNR [188], [189]. RNR over-expression or RNR resistance
to gemcitabine is a major cause of gemcitabine-based
treatment failure [190], [191]. Furthermore, inhibiting RNR
results in increased sensitivity to gemcitabine and can
overcome resistance in pancreatic cancer [192]. Importantly,
artesunate is able to down-regulate RNR expression [155].
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Fig.2. Artesunate is able to compensate two of gemcitabine’s drawbacks:
the compensatory production of antioxidants and bypass the ineffective
apoptosis by ferroptosis. Blocking GRP78, artesunate’s ferroptotic effects
can be increased (not shown in the diagram). GRP78/BIP is a chaperone
molecule of the endoplasmic reticulum that intervenes in protein quality
control[183]. Iron dependence of lipid peroxidation in the diagram is based
on reference [184].

Another usual mechanism of PDAC gemcitabine
resistance is mediated through resistance to apoptosis [193]-
[195]. ARTs are able to induce apoptosis but importantly it
can kill malignant cells by a mechanism that is independent
of and different from apoptosis: ferroptosis. This alternative
cell death does not require the presence of apoptotic proteins
but rather iron which is part of the redox deregulation created
by ARTs.

Cytokines play a very important role in pancreatic cancer.
All the pro-inflammatory cytokines active in acute
pancreatitis are also found as a cause of the desmoplastic
reaction in PDAC, namely tumor necrosis factor (TNF),
platelet activating factor, IL-1, IL-6, IL-8, and IL-10 as the
main players. ARTs were found to decrease many of these
cytokines and inflammatory pathways [65], suppresses the
IL-6/KAK/STAT signaling pathway [196], inhibits STAT3
[197], and decreases cytokine release from macrophages
[198].

Artemisinin can disable the fibrotic process through the
pathways mentioned and also by inhibiting other important
mechanisms such as TGF-B, MAPK, Wnt/B-catenin,
PI3K/AKT, BMP-7 and Notch signaling [199]. Fibrosis, as
part of the desmoplastic reaction in pancreatic cancer is an
important cause of drug resistance because it impedes drug
access to the tumor. ARS has shown to reduce fibrosis in the
liver [200]. Interestingly, the same type of cells that cause
hepatic fibrosis are operative in PDAC: stellate cells. In the
liver, ARS inhibited proliferation and induced apoptosis of
stellate cells [201], [202]. Although we lack experimental
evidence to maintain that the same events may occur in
PDAC, we do believe that this point deserves to be
investigated. Evidence shows that ARS have anti-fibrotic
effects in different tissues [203]. Desmoplastic reaction
pathogenesis in PDAC is basically the same in different
tissues, therefore, we may consider that it is not
fundamentally different from what happens in other tumors
and inflammatory desmoplastic responses in general.

There is overwhelming evidence of the anti-fibrotic effects
of ARTs in liver and other tissues [204]-[206].
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VI. CONCLUSIONS

ARTs have shown cytotoxic effects in multidrug resistant

cells without cross-resistance. Thus, it can be considered an
ultimate salvage drug when everything seems to be doomed

to

failure.
The areas of cooperation between gemcitabine and ARTs

in pancreatic cancer can be summarized in the following
points:
1) ARTs can increase sensitivity to gemcitabine by

2)
3)
4)

5)

6)

7)

to

inhibiting RNR.
ARTs can reduce gemcitabine resistance by the same
token.
ARTs are able to kill pancreatic cancer cells when
apoptosis is decreased by using the ferroptotic pathway.
ARTs can eliminate the secondary production of anti-
oxidants elicited by gemcitabine (Fig. 2).
ARTSs can inhibit fibrosis thus reducing the desmoplastic
reaction, which in turn increases gemcitabine’s access to
the tumor and impede the pro-tumoral crosstalk between
stroma and tumor.
ARTs have independent cytotoxic effects that can add to
gemcitabine cytotoxicity.
ARTs do not significantly increase chemotherapeutic
side effects and exert no toxicity on normal cells.
Based on these parameters, we believe that time has come
test ARTs associated with gemcitabine in the first line

treatment of PDAC.
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