Is Artesunate the Best Partner of Gemcitabine in Pancreatic Cancer?
Article Main Content
Pancreatic adenocarcinoma (PDAC) is still one of the most malignant and difficult to treat cancers. The therapeutic protocols in use, such as gemcitabine, gemcitabine associated with nab-paclitaxel and/or cisplatin or the FOLFIRINOX scheme have added very little to PDAC outcome. It is clear by now, that none of them can do the job alone. The more than 3,300 trials registered in clinicaltrials.gov is the best proof that research has not yet found an adequate response to tackle this disease. Thus, an innovative search is badly needed. As part of this investigation we came across a phytotherapeutic product that has been very successful for the treatment of falciparum- and vivax- caused malaria: artemisinin derivatives. These derivatives showed very low toxicity for humans and have been tested in millions of patients with paludism.
Interestingly, they have also shown important anti-cancer properties. Regarding PDAC in particular there is strong evidence supporting not only an additive effect to gemcitabine without a concomitant increase in human toxicity, but also decreased resistance. This mini-review will discuss the evidence showing that artemisinin derivatives can be the best possible association with gemcitabine for PDAC chemotherapeutic treatment.
References
-
Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World Journal of Oncology. 2019; 10(1): 10.
Google Scholar
1
-
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018; 68(6): 394-424.
Google Scholar
2
-
Klein AP. Pancreatic cancer: a growing burden. The Lancet Gastroenterology & Hepatology. 2019; 4(12): 895-6.
Google Scholar
3
-
Burris H, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology. 1997: 15(6): 2403-2413.
Google Scholar
4
-
Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New England Journal of Medicine. 2011; 364(19): 1817-25.
Google Scholar
5
-
Cindy H. Lasker Award Rekindles Debate Over Artemisinin's Discovery. Science. 2011.
Google Scholar
6
-
Miller LH, Su, X. Artemisinin: Discovery from the Chinese herbal garden. Cell. 2011; 146(6): 855–858.
Google Scholar
7
-
Jianfang Z. A detailed chronological record of project 523 and the discovery and development of qinghaosu (artemisinin). Strategic Book Publishing; 2013.
Google Scholar
8
-
Shang A, Huwiler K, Nartey L, Jüni P, Egger M. Placebo-controlled trials of Chinese herbal medicine and conventional medicine comparative study. Int J Epidemiol. 2007; 36(5): 1086-92.
Google Scholar
9
-
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 2011; 17: 1217–1220.
Google Scholar
10
-
Meshnick SR, Taylor TE, Kamchonwongpaisan S. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiological Reviews. 1996; 60(2): 301-15.
Google Scholar
11
-
WHO guidelines for the treatment of malaria. World Health Organization. Third Edition. [Internet] 2015. Available from: https://apps.who.int/iris/handle/10665/162441
Google Scholar
12
-
WHO Guidelines for malaria. [Internet] 2022. Available from: https://www.who.int/publications/i/item/guidelines-for-malaria accessed April 4 2022.
Google Scholar
13
-
van Agtmael M, Eggelte TA, van Boxtel CJ. Artemisinin drugs in the treatment of malaria: From medicinal herb to registered medication. Trends Pharmacol Sci. 1999; 20(5): 199–205.
Google Scholar
14
-
Nair MS, Basile DV. Bioconversion of arteannuin B to artemisinin. Journal of Natural Products. 1993; 56(9): 1559-66.
Google Scholar
15
-
Chaturvedi D, Goswami A, Saikia PP, Barua NC, Rao PG. Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents. Chemical Society Reviews. 2010; 39(2): 435-54.
Google Scholar
16
-
Ellis DS, Li ZL, Gu HM, Peters W, Robinson BL, Tovey G, et al. The chemotherapy of rodent malaria, XXXIX: Ultrastructural changes following treatment with artemisinine of Plasmodium berghei infection in mice, with observations of the localization of [3H]-dihydroartemisinine in P. falciparum in vitro. Annals of Tropical Medicine & Parasitology. 1985; 79(4): 367-74.
Google Scholar
17
-
Maeno Y, Toyoshima T, Fujioka H, Ito Y, Meshnick SR, Benakis A, et al. Morphologic effects of artemisinin in Plasmodium falciparum. The American Journal of Tropical Medicine and Hygiene. 1993; 49(4): 485-91.
Google Scholar
18
-
Mercer AE, Maggs JL, Sun XM, Cohen GM, Chadwick J, O’Neill PM, et al. Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds. Journal of Biological Chemistry. 2007; 282(13): 9372-82.
Google Scholar
19
-
Pandey AV, Tekwani BL, Singh RL, Chauhan VS. Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem. 1999; 274: 19383.
Google Scholar
20
-
Posner GH, O’Neill PM. Knowledge of the proposed chemical mechanism of action and cytochrome p450 metabolism of antimalarial trioxanes like artemisinin allows rational design of new antimalarial peroxides. Acc. Chem. Res. 2004; 37: 397.
Google Scholar
21
-
Tanaka Y, Kamei K, Otoguro K, Omura S. Heme-dependent radical generation: possible involvement in antimalarial action of non-peroxide microbial metabolites, nanaomycin A and radicicol. J. Antibiot. 1999; 52: 880 –888.
Google Scholar
22
-
Lisewski AM, Quiros JP, Ng CL, Adikesavan AK, Miura K, Putluri N, et al. Supergenomic network compression and the discovery of EXP1 as a glutathione transferase inhibited by artesunate. Cell. 2014; 158(4): 916-28.
Google Scholar
23
-
Eckstein-Ludwig U, Webb RJ, Van Goethem IDA, East JM, Lee AG, Kimura M, et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature. 2003; 424(6951): 957-61.
Google Scholar
24
-
Arnou B, Montigny C, Morth JP, Nissen P, Jaxel C, Moller JV, et al. The Plasmodium falciparum Ca2+-ATPase PfATP6: insensitive to artemisinin, but a potential drug target. Biochem Soc Trans. 2011; 39(3): 823-31.
Google Scholar
25
-
Woerdenbag HJ, Moskal TA, Pras N, Malingré TM, El-Feraly FS, Kampinga HH, et al. Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. Journal of Natural Products. 1993; 56(6): 849-56.
Google Scholar
26
-
Krishna S, Bustamante L, Haynes RK, Staines HM. Artemisinins: their growing importance in medicine. Trends in Pharmacological Sciences. 2008; 29(10): 520-7.
Google Scholar
27
-
O’neill PM, Barton VE, Ward SA. The molecular mechanism of action of artemisinin—the debate continues. Molecules. 2010; 15(3): 1705-21.
Google Scholar
28
-
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5): 1060-72.
Google Scholar
29
-
Dixon SJ. Ferroptosis: bug or feature?. Immunological Reviews. 2017; 277(1): 150-7.
Google Scholar
30
-
Lei P, Bai T, Sun Y. Mechanisms of ferroptosis and relations with regulated cell death: a review. Frontiers inPhysiology. 2019; 10: 139.
Google Scholar
31
-
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan V, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014; 156(1-2): 317-31.
Google Scholar
32
-
Kong Z, Liu R, Cheng Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomedicine & Pharmacotherapy. 2019;109: 2043-53.
Google Scholar
33
-
Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity. International Journal for Parasitology. 2002; 32(13): 1655-60.
Google Scholar
34
-
Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. Iron and cancer: recent insights. Annals of the New York Academy of Sciences. 2016; 1368(1): 149-61.
Google Scholar
35
-
Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM. Iron and cancer. Annual Review of Nutrition. 2018; 38: 97-125.
Google Scholar
36
-
Lai H, Sasaki T, Singh NP, Messay A. Effects of artemisinin-tagged holotransferrin on cancer cells. Life Sci. 2005; 76(11): 2277-80.
Google Scholar
37
-
Toshiyama R, Konno M, Eguchi H, Asai A, Noda T, Koseki J, et al. Association of iron metabolic enzyme hepcidin expression levels with the prognosis of patients with pancreatic cancer. Oncology Letters. 2018; 15(5): 8125-33.
Google Scholar
38
-
Bhutia YD, Ogura J, Grippo PJ, Torres C, Sato T, Wachtel M, et al. Chronic exposure to excess iron promotes EMT and cancer via p53 loss in pancreatic cancer. Asian Journal of Pharmaceutical Sciences. 2020; 15(2): 237-51.
Google Scholar
39
-
Cheng R, Li C, Li C, Li W, Li L, Zhang Y, et al. The artemisinin derivative artesunate inhibits corneal neovascularization by inducing ROS-dependent apoptosis in vascular endothelial cells. Investigative Ophthalmology & Visual Science. 2013; 54(5): 3400-9.
Google Scholar
40
-
Vandewynckel YP, Laukens D, Geerts A, Vanhoe C, Descamps B, Colle I, et al. Therapeutic effects of artesunate in hepatocellular carcinoma: repurposing an ancient antimalarial agent. Eur J Gastroenterol Hepatol. 2014; 26(8): 861-70.
Google Scholar
41
-
Saeed ME, Kadioglu O, Seo EJ, Greten HJ, Brenk R, Efferth T. Quantitative structure-activity relationship and molecular docking of artemisinin derivatives to vascular endothelial growth factor receptor 1. Anticancer Res. 2015; 35(4): 1929-34.
Google Scholar
42
-
Da Eun Jeong HJ, Lim S, Lee SJ, Lim JE, Nam D-H, Joo KM, et al. Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget. 2015; 6(32): 33046.
Google Scholar
43
-
Chen H, Shi L, Yang X, Li S, Guo X, Pan L. Artesunate inhibiting angiogenesis induced by human myeloma RPMI8226 cells. Int J Hematol. 2010; 92(4): 587-97.
Google Scholar
44
-
Zhou HJ, Wang WQ, Wu GD, Lee J, Li A. Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vascul Pharmacol. 2007; 47(2-3): 131-8.
Google Scholar
45
-
Chen HH, Zhou HJ, Wu GD, Lou XE. Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1. Pharmacology. 2004; 71(1): 1-9.
Google Scholar
46
-
Wang J, Zhang B, Guo Y, Li G, Xie Q, Zhu B, et al. Artemisinin Inhibits Tumor Lymphangiogenesis by Suppression of Vascular Endothelial Growth Factor C. Pharmacology. 2008; 82: 148-155.
Google Scholar
47
-
Willoughby Sr JA, Sundar SN, Cheung M, Tin AS, Modiano J, Firestone GL. Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression. Journal of Biological Chemistry. 2009; 284(4): 2203–13.
Google Scholar
48
-
Tin AS, Sundar SN, Tran KQ, Park AH, Poindexter KM, Firestone GL. Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes. Anticancer Drugs. 2012; 23(4): 370-9.
Google Scholar
49
-
Yang YZ, Little B, Meshnick SR. Alkylation of proteins by artemisinin. Effects of heme, pH and drug structure. Biochem Pharmacol. 1994; 48(3): 569-73.
Google Scholar
50
-
Wang Y, Huang ZQ, Wang CQ,Wang L-S, Meng S, Zhang Y-C, et al. Artemisinin inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-9 expression via a protein kinase Co/p38/extracellular signal regulated kinase pathway in phorbol myristate acetate-induced THP-1 macrophages. Clin Exp Phrmacol Physiol. 2011; 38(1): 11-18.
Google Scholar
51
-
Kolligs FT, Bommer G, Göke B. Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion. 2002; 66(3): 131-44.
Google Scholar
52
-
Heiser PW, Cano DA, Landsman L, Kim GE, Kench JG, Klimstra DS, et al. Stabilization of β-catenin induces pancreas tumor formation. Gastroenterology. 2008; 135(4): 1288-300.
Google Scholar
53
-
Cui J, Jiang W, Wang S, Wang L, Xie K. Role of Wnt/β-catenin signaling in drug resistance of pancreatic cancer. Current Pharmaceutical Design. 2012; 18(17): 2464-71.
Google Scholar
54
-
Hua YQ, Zhang K, Sheng J, Ning Z-Y, Li Y, Shi W-D, et al. Fam83D promotes tumorigenesis and gemcitabine resistance of pancreatic adenocarcinoma through the Wnt/β-catenin pathway. Life Sciences. 2021; 287: 119205.
Google Scholar
55
-
Li LN, Zhang HD, Yuan SJ, Tian Z-Y, Wang Li, Sun Z-X. Artesunate attenuates the growth of human colorectal carcinoma and inhibits hyperactive Wnt/b-catenin pathway. Int. J. Cancer. 2007; 121: 1360–1365.
Google Scholar
56
-
Cui C, Feng H, Shi X, Wang Y, Feng Z, Liu J, et al. Artesunate down-regulates immunosuppression from colorectal cancer Colon26 and RKO cells in vitro by decreasing transforming growth factor β1 and interleukin-10. International Immunopharmacology. 2015; 27(1): 110-21.
Google Scholar
57
-
Odaka Y, Xu B, Luo Y, Shen T, Shang C, Wu Y, et al. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells. Carcinogenesis. 2014; 35(1): 192-200
Google Scholar
58
-
Li Q, Ni W, Deng Z, Liu M, She L, Xie Q. Targeting nasopharyngeal carcinoma by artesunate through inhibiting Akt/mTOR and inducing oxidative stress. Fundamental & Clinical Pharmacology. 2017; 31(3): 301-10.
Google Scholar
59
-
Li PC, Lam E, Roos WP, Zdzienicka MZ, Kaina B, Efferth T. Artesunate derived from traditional Chinese medicine induces DNA damage and repair. Cancer Research. 2008; 68(11): 4347-51.
Google Scholar
60
-
Berdelle N, Nikolova T, Quiros S, Efferth T, Kaina B. Artesunate induces oxidative DNA damage, sustained double-strand breaks, and the ATM/ATR damage response in cancer cells. Mol Cancer Ther. 2011; 10: 2224-2233.
Google Scholar
61
-
Reungpatthanaphong P, Mankhetkorn S. Modulation of Multidrug Resistance by Artemisinin, Artesunate and Dihydroartemisinin in K562/adr and GLC4/adr Resistant Cell Lines. Biological and Pharmaceutical Bulletin. 2002; 25(12): 1555-61.
Google Scholar
62
-
Efferth T, Sauerbrey A, Olbrich A, Gebhart E, Rauch P, Weber HO, et al. Molecular modes of action of artesunate in tumor cell lines. Mol Pharmacol. 2003; 64(2): 382-94.
Google Scholar
63
-
Cheng C, Ho WE, Goh FY, Guan SP, Kong LR, Lai W-Q, et al. Anti-malarial drug artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/Akt pathway. PLoS One. 2011; 6(6): e20932.
Google Scholar
64
-
Xu H, He Y, Yang X, Liang L, Zhan Z, Ye Y, et al. Anti-malarial agent artesunate inhibits TNF-alpha-induced production of proinflammatory cytokines via inhibition of NF-kappaB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology (Oxford). 2007; 46(6): 920-6.
Google Scholar
65
-
Thanaketpaisarn O, Waiwut P, Sakurai H, Saiki I. Artesunate enhances TRAIL-induced apoptosis in human cervical carcinoma cells through inhibition of the NF-κB and PI3K/Akt signaling pathways. International Journal of Oncology. 2011; 39(1): 279-85.
Google Scholar
66
-
Xiao Q, Yang L, Hu H, Ke Y. Artesunate targets oral tongue squamous cell carcinoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/ mTOR inhibition. Journal of Bioenergetics and Biomembranes. 2020; 52(2): 113-21.
Google Scholar
67
-
Chen X, Wong YK, Lim TK, Lim WH, Lin Q, Wang J, et al. Artesunate activates the intrinsic apoptosis of HCT116 cells through the suppression of fatty acid synthesis and the NF-κB pathway. Molecules. 2017; 22(8): 1272.
Google Scholar
68
-
Spiridonov NA, Konovalov DA, Arkhipov VV. Cytotoxicity of some Russian ethnomedicinal plants and plant compounds. Phytother. Res., 2005; 19: 428–432.
Google Scholar
69
-
Woerdenbag HJ, Moskal TA, Pras N, Malingré TM, el-Feraly FS, Kampinga HH, et al. Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. J Nat Prod. 1993; 56(6): 849-56.
Google Scholar
70
-
Sun WC, Han JX, Yang WY, Deng DA, Yue XF. Antitumor activities of 4 derivatives of artemisic acid and artemisinin B in vitro. Zhongguo Yao Li Xue Bao. 1992; 13(6): 541-3.
Google Scholar
71
-
Zheng GQ. Cytotoxic terpenoids and flavonoids from Artemisia annua. Planta Med. 1994; 60(1): 54-57.
Google Scholar
72
-
Zyad A, Tilaoui M, Jaafari A, Oukerrou MA, Mouse HA. More insights into the pharmacological effects of artemisinin. Phytotherapy Research. 2018; 32(2): 216-29.
Google Scholar
73
-
Nam W, Tak J, Ryu JK, Jung M, Yook J-I, Kim H-J, et al. Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head & Neck. 2007; 29(4): 335-40.
Google Scholar
74
-
Singh NP, Verma KB. Case report of a laryngeal squamous cell carcinoma treated with artesunate. Archive of Oncology. 2002; 10(04): 279-280.
Google Scholar
75
-
Wang Z, Hu W, Zhang J-L, Wu X-H, Zhou H-J. Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Bio. 2012; 2: 103-112.
Google Scholar
76
-
Deng DA, Xu CH, Cai JC. Derivatives of arteannuin B with antileukemia activity. Yao Xue Xue Bao. 1992; 27(4): 317-20.
Google Scholar
77
-
Drenberg CD, Buaboonnam J, Orwick SJ, Hu S, Li L, Fan Y, et al. Evaluation of artemisinins for the treatment of acute myeloid leukemia. Cancer Chemother Pharmacol. 2016; 77(6): 1231-43.
Google Scholar
78
-
Fox JM, Moynihan JR, Mott BT, Mazzone JR, Anders NM, Brown PA, et al. Artemisinin-derived dimer ART-838 potently inhibited human acute leukemias, persisted in vivo, and synergized with antileukemic drugs. Oncotarget. 2016; 7(6): 7268-79.
Google Scholar
79
-
Efferth T, Giaisi M, Merling A, Krammer PH, Li-Weber M. Artesunate induces ROS-mediated apoptosis in doxorubicin-resistant T leukemia cells. PloS One. 2007; 2(8): e693.
Google Scholar
80
-
Chen S, Gan S, Han L, Li X, Xie X, Zou D, et al. Artesunate induces apoptosis and inhibits the proliferation, stemness, and tumorigenesis of leukemia. Annals of Translational Medicine. 2020; 8(12).
Google Scholar
81
-
Sieber S, Gdynia G, Roth W, Bonavida B, Efferth T. Combination treatment of malignant B cells using the anti-CD20 antibody rituximab and the anti-malarial artesunate. Int J Oncol. 2009; 35(1): 149-58.
Google Scholar
82
-
Våtsveen TK, Myhre MR, Steen CB, Walchli S, Lingjærde OC, Bai B, et al. Artesunate shows potent anti-tumor activity in B-cell lymphoma. Journal of Hematology & Oncology. 2018; 11(1): 1-2.
Google Scholar
83
-
Holien T, Olsen OE, Misund K, Hella H, Waage A, Rø TB, et al. Lymphoma and myeloma cells are highly sensitive to growth arrest and apoptosis induced by artesunate. European Journal of Haematology. 2013; 91(4): 339-46.
Google Scholar
84
-
Morrissey C, Gallis B, Solazzi JW, Kim BJ, Gulati R, Vakar-Lopez F, et al. Effect of artemisinin derivatives on apoptosis and cell cycle in prostate cancer cells. Anti-Cancer Drugs. 2010; 21(4): 423.
Google Scholar
85
-
Wang Z, Wang C, Wu Z, Xue J, Shen B, Zuo W, et al. Artesunate suppresses the growth of prostatic cancer cells through inhibiting androgen receptor. Biological and Pharmaceutical Bulletin. 2017; 40(4): 479-85.
Google Scholar
86
-
Sundar SN, Marconett CN, Doan VB, Willoughby JA, Firestone GL, Artemisinin selectively decreases functional levels of estrogen receptor-alpha and ablates estrogen-induced proliferation in human breast cancer cells. Carcinogenesis. 2008; 29(12): 2252-8.
Google Scholar
87
-
Tin AS, Sundar SN, Tran KQ, Park AH, Poindexter KM, Firestone GL. Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes. Anti-Cancer Drugs. 2012; 23(4): 370-9.
Google Scholar
88
-
Greenshields AL, Fernando W, Hoskin DW. The anti-malarial drug artesunate causes cell cycle arrest and apoptosis of triple-negative MDA-MB-468 and HER2-enriched SK-BR-3 breast cancer cells. Exp Mol Pathol. 2019; 107: 10-22.
Google Scholar
89
-
Pirali M, Taheri M, Zarei S, Majidi M, Ghafouri H. Artesunate, as a HSP70 ATPase activity inhibitor, induces apoptosis in breast cancer cells. Int J Biol Macromol. 2020; 164: 3369-3375.
Google Scholar
90
-
Chen W, Qi H, Wu C, Cui Y, Liu B, Li Y, Wu J. Effect of dihydroartemisinin on proliferation of human lung adenocarcinoma cell line A549. Zhonqquo Fei Ai Za Zhi. 2005; 8(2): 85-8.
Google Scholar
91
-
Liao K, Li J, Wang Z. Dihydroartemisinin inhibits cell proliferation via AKT/GSK3β/cyclinD1 pathway and induces apoptosis in A549 lung cancer cells. Int J Clin Exp Pathol. 2014; 7(12): 8684-91.
Google Scholar
92
-
Zhao Y, Jiang W, Li B, Yao Q, Dong J, Cen Y, et al. Artesunate enhances radiosensitivity of human non-small cell lung cancer A549 cells via increasing NO production to induce cell cycle arrest at G2/M phase. Int Immunopharmacol. 2011; 11(12): 2039-46.
Google Scholar
93
-
Ma H, Yao Q, Zhang AM, Lin S, Wang XX, Wu Li, et al. The effects of artesunate on the expression of EGFR and ABCG2 in A549 human lung cancer cells and a xenograft model. Molecules. 2011; 16(12): 10556-69.
Google Scholar
94
-
Rasheed SA, Efferth T, Asangani IA, Allgayer H. First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int J Cancer. 2010; 127(6): 1475-85.
Google Scholar
95
-
Ganguli A, Choudhury D, Datta S, Bhattacharya S, Chakrabart G. Inhibition of autophagy by chloroquine potentiates synergistically anti-cancer property of artemisinin by promoting ROS dependent apoptosis. Biochimie. 2014; 107 Pt B: 338-49.
Google Scholar
96
-
Zhang ZY, Yu SQ, Miao LY, Huang XY, Zhang XP, Zhu YP, et al. Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: a randomized controlled trial. Zhong Xi Yi Jie He Xue Bao. 2008; 6(2): 134-8.
Google Scholar
97
-
Berger TG, Dieckmann D, Efferth T, Schultz ES, Funk JO, Baur A, et al. Artesunate in the treatment of metastatic uveal melanoma-first experiences. Oncol Rep. 2005; 14(6): 1599-603.
Google Scholar
98
-
Buommino E, Baroni A, Canozo N, Petrazzuolo M, Nicoletti R, Vozza A, et al. Artemisinin reduces human melanoma cell migration by down-regulating alpha V beta 3 integrin and reducing metalloproteinase 2 production. Invest New Drugs. 2009; 27(5): 412-8.
Google Scholar
99
-
Cabello CM, Lamore SD, Bair WB 3rd, Qiao S, Azimian S, Lesson JL, et al. The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but not primary melanocytes with induction of NOXA-dependent apoptosis. Invest New Drugs. 2012; 30(4): 1289-301.
Google Scholar
100
-
Berköz M, Özkan-Yılmaz F, Özlüer-Hunt A, Krosniak M, Türkmen Ö, Korkmaz D, et al. Artesunate inhibits melanoma progression in vitro via suppressing STAT3 signaling pathway. Pharmacological Reports. 2021; 73(2): 650-63.
Google Scholar
101
-
Geng B, Zhu Y, Yuan Y, Bai J, Dou Z, Sui A, et al. Artesunate Suppresses Choroidal Melanoma Vasculogenic Mimicry Formation and Angiogenesis via the Wnt/CaMKII Signaling Axis. Frontiers in Oncology. 2021: 3131.
Google Scholar
102
-
Jeong da E, Song HJ, Lim S, Lee SJJ, Lim JE, Nam D-H, et al. Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget. 2015; 6(32): 33046-64.
Google Scholar
103
-
Markowitsch SD, Schupp P, Lauckner J, Vakhrusheva O, Slade KS, Mager R, et al. Artesunate inhibits growth of sunitinib-resistant renal cell carcinoma cells through cell cycle arrest and induction of ferroptosis. Cancers. 2020; 12(11): 3150.
Google Scholar
104
-
Juengel E, Markowitsch S, Erb HH, Efferth T, Haferkamp A. Artesunate reduces tumor growth in sunitinb-resistant renal cell carcinoma cells. Cancer Res. 2019; 79(13 Suppl): Abstract nr 3805.
Google Scholar
105
-
Anfosso L, Efferth T, Albini A, Pfeffer U. Microarray expression profiles of angiogenesis-related genes predict tumor cell response to artemisinins. The Pharmacogenomics Journal. 2006; 6(4): 269-78.
Google Scholar
106
-
Hou J, Wang D, Zhang R, Wang H. Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clinical Cancer Research. 2008; 14(17): 5519-30.
Google Scholar
107
-
Li Y, Lu J, Chen Q, Han S, Shao H, Chen P, et al. Artemisinin suppresses hepatocellular carcinoma cell growth, migration and invasion by targeting cellular bioenergetics and Hippo-YAP signaling. Arch Toxicol. 2019; 93(11): 3367-3383.
Google Scholar
108
-
Weifeng T, Feng S, Xiangji L, Changqing S, Zhiquan Q, Huazhong Z, et al. Artemisinin inhibits in vitro and in vivo invasion and metastasis of human hepatocellular carcinoma cells. Phytomedicine.2011; 18(2-3): 158-62.
Google Scholar
109
-
Chaijaroenkul W, Viyanant V, Mahavorasirikul W, Na-Bangchang K. Cytotoxic activity of artemisinin derivatives against cholangiocarcinoma (CL-6) and hepatocarcinoma (Hep-G2) cell lines. Asian Pac J Cancer Prev. 2011; 12(1): 55-9.
Google Scholar
110
-
Nandi D, Cheema PS, Singal A, Bharti H, Nag A. Artemisinin Mediates Its Tumor-Suppressive Activity in Hepatocellular Carcinoma Through Targeted Inhibition of FoxM1. Front Oncol. 2021; 11: 751271.
Google Scholar
111
-
Deng XR, Liu ZX, Liu F, Pan L, Yu HP, Jiang JP, et al. Holotransferrin enhances selective anticancer activity of artemisinin against human hepatocellular carcinoma cells. J Huazhong Univ Sci Technolog Med Sci. 2013; 33(6): 862-865.
Google Scholar
112
-
Wu L, Pang Y, Qin G, Xi G, Wu S, Wang X, et al. Farnesylthiosalicylic acid sensitizes hepatocarcinoma cells to artemisinin derivatives. PLoS One. 2017; 12(2).
Google Scholar
113
-
Vandewynckel YP, Laukens D, Geerts A, Vanhoe C, Descamps B, Colle I, et al. Therapeutic effects of artesunate in hepatocellular carcinoma: repurposing an ancient antimalarial agent. Eur J Gastroenterol Hepatol. 2014; 26(8): 861-70.
Google Scholar
114
-
Hao L, Guo Y, Peng Q, Zhang Z, Ji J, Liu Y, et al. Dihydroartemisinin reduced lipid droplet deposition by YAP1 to promote the anti-PD-1 effect in hepatocellular carcinoma. Phytomedicine. 2022; 96: 153913.
Google Scholar
115
-
Im E, Yeo C, Lee HJ, Lee EO. Dihydroartemisinin induced caspase-dependent apoptosis through inhibiting the specificity protein 1 pathway in hepatocellular carcinoma SK-Hep-1 cells. Life Sci. 2018; 192: 286-292.
Google Scholar
116
-
Qin G, Zhao C, Zhang L, Liu H, Quan Y, Chai L, et al. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells. Apoptosis. 2015; 20(8): 1072-86.
Google Scholar
117
-
Yao X, Zhao CR, Yin H, Wang K, Gao JJ. Synergistic antitumor activity of sorafenib and artesunate in hepatocellular carcinoma cells. Acta Pharmacol Sin. 2020; 41(12): 1609-1620.
Google Scholar
118
-
Jiang Z, Wang Z, Chen L, Zhang C, Liao F, et al. Artesunate induces ER-derived-ROS-mediated cell death by disrupting labile iron pool and iron redistribution in hepatocellular carcinoma cells. Am J Cancer Res. 2021; 11(3): 691-711.
Google Scholar
119
-
Krishna S, Ganapathi S, Ster IC, Saeed MEM, Cowan M, Finlayson C, et al. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine. 2015; 2(1): 82-90.
Google Scholar
120
-
Li LN, Zhang HD, Yuan SJ, Tian ZY, Wang L, Sun ZX. Artesunate attenuates the growth of human colorectal carcinoma and inhibits hyperactive Wnt/b-catenin pathway. Int. J. Cancer. 2007; 121: 1360–1365.
Google Scholar
121
-
Lu M, Sun L, Zhou J, Yang J. Dihydroartemisinin induces apoptosis in colorectal cancer cells through the mitochondrial-dependent pathway. Tumour Biol. 2014; 35(6): 5307-14.
Google Scholar
122
-
Lu M, Sun L, Zhou J, Zhao Y, Deng X. Dihydroartemisinin-induced apoptosis is associated with inhibition of sarco/endoplasmic reticulum calcium ATPase activity in colorectal cancer. Cell Biochem Biophys. 2015; 73(1): 137-45.
Google Scholar
123
-
Fröhlich T, Ndreshkjana B, Muenzner JK, Reiter C, Hofmeister E, Mederer S, et al. Synthesis of Novel Hybrids of Thymoquinone and Artemisinin with High Activity and Selectivity Against Colon Cancer. ChemMedChem. 2017; 12(3): 226/234.
Google Scholar
124
-
Zhao F, Wang H, Kunda P, Chen X, Liu QL, Liu T. Artesunate exerts specific cytotoxicity in retinoblastoma cells via CD71. Oncology Reports. 2013; 30(3): 1473-82.
Google Scholar
125
-
Li X, Zhou Y, Liu Y, Zhang X, Chen T, Chen K, et al. Preclinical Efficacy and Safety Assessment of Artemisinin-Chemotherapeutic Agent Conjugates for Ovarian Cancer. EBioMedicine. 2016; 14: 44-54.
Google Scholar
126
-
Wu B, Hu K, Li S, Zhu J, Gu L, Shen H, et al. Dihydroartiminisin inhibits the growth and metastasis of epithelial ovarian cancer. Oncology Reports. 2012; 27(1): 101-108.
Google Scholar
127
-
Zhang ZS, Wang J, Shen YB, Guo CC, Sai KE, Chen FR, et al. Dihydroartemisinin increases temozolomide efficacy in glioma cells by inducing autophagy. Oncology Letters. 2015; 10(1): 379-83.
Google Scholar
128
-
Karpel-Massler G, Westhoff MA, Kast RE, DwucetA, Nonnemacher L, Wirtz CR, et al. Artesunate enhances the antiproliferative effect of temozolomide on U87MG and A172 glioblastoma cell lines. Anticancer Agents Med Chem. 2014; 14(2): 313-8.
Google Scholar
129
-
Reichert S, Reinboldt V, Hehlgans S, Effarth T, Rödel C, Ridel F. A radiosensitizing effect of artesunate in glioblastoma cells is associated with a diminished expression of the inhibitor of apoptosis protein survivin.. Radiother Oncol. 2012; 103(3): 394-401.
Google Scholar
130
-
Que Z, Wang P, Hu Y, Xue Y, Liu X, Qu C, et al. Dihydroartemisin inhibits glioma invasiveness via a ROS to P53 to β-catenin signaling. Pharmacol Res. 2017; 119: 72-88.
Google Scholar
131
-
Rinner B, Siegl V, Pürstner P, Efferth T, Brem B, Greger H, et al. Activity of novel plant extracts against medullary thyroid carcinoma cells. Anticancer Res. 2004; 24(2A): 495-500.
Google Scholar
132
-
Ma L, Fei H. Antimalarial drug artesunate is effective against chemoresistant anaplastic thyroid carcinoma via targeting mitochondrial metabolism. Journal of Bioenergetics and Biomembranes. 2020; 52(2): 123-30.
Google Scholar
133
-
Xu Z, Liu X, Zhuang D. Artesunate inhibits proliferation, migration, and invasion of thyroid cancer cells by regulating the PI3K/AKT/FKHR pathway. Biochemistry and Cell Biology. 2022; 100(1): 85-92.
Google Scholar
134
-
Zhang HT, Wang YL, Zhang J, Zhang QX. Artemisinin inhibits gastric cancer cell proliferation through upregulation of p53. Tumour Biol. 2014; 35(2): 1403-9.
Google Scholar
135
-
Wang L, Liu L, Wang J, Chen Y. Inhibitory effect of artesunate on growth and apoptosis of gastric cancer cells. Archives of Medical Research. 2017; 48(7): 623-30.
Google Scholar
136
-
Zhang P, Luo HS, Li M, Tan SY. Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2. OncoTargets and Therapy. 2015; 8: 845.
Google Scholar
137
-
Tang C, Ao PY, Zhao YQ, Huang SZ, Jin Y, Liu JJ, et al. Effect and mechanism of dihydroartemisinin on proliferation, metastasis and apoptosis of human osteosarcoma cells. J Biol Regul Homeost Agents. 2015; 29(4): 881-7.
Google Scholar
138
-
Tang C, Zhao Y, Huang S, Jin Y, Liu J, Luo J, et al. Influence of Artemisia annua extract derivatives on proliferation, apoptosis and metastasis of osteosarcoma cells. Pak J Pharm Sci. 2015; 28(2 Suppl): 773-9.
Google Scholar
139
-
Xu Q, Li ZX, Peng HQ, Sun ZW, Cheng RL, Ye ZM, Artesunate inhibits growth and induces apoptosis in human osteosarcoma HOS cell line in vitro and in vivo. J Zhejiang Univ Sci B. 2011; 12(4): 247-55.
Google Scholar
140
-
Ji Y, Zhang YC, Pei LB, Shi LL, Yan JL, Ma XH. Anti-tumor effects of dihydroartemisinin on human osteosarcoma. Mol Cell Biochem. 2011; 351(1-2): 99-108.
Google Scholar
141
-
Hosoya K, Murahari S, Laio A, London CA, Couto CG, Kisseberth WC. Biological activity of dihydroartemisinin in canine osteosarcoma cell lines. Am J Vet Res. 2008; 69(4): 519-26.
Google Scholar
142
-
Liu Y, Wang W, Xu J, Li L, Dong Q, Shi Q, et al. Dihydroartemisinin inhibits tumor growth of human osteosarcoma cells by suppressing Wnt/β-catenin signaling. Oncol Rep. 2013; 30(4): 1723-30.
Google Scholar
143
-
Odaka Y, Xu B, Luo Y, Shen T, Shang C, Wu Y, et al. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells. Carcinogenesis. 2014; 35(1): 192-200.
Google Scholar
144
-
Beccafico S, Morozzi G, Marchetti MC, Riccardi C, Sidoni A, Donat R, et al. Artesunate induces ROS- and p38 MAPK-mediated apoptosis and counteracts tumor growth in vivo in embryonal rhabdomyosarcoma cells. Carcinogenesis. 2015; 36(9): 1071-83.
Google Scholar
145
-
Dell'Eva R, Pfeffer U, Vené R, Anfosso L, Forlani A, Albini A, Efferth T. Inhibition of angiogenesis in vivo and growth of Kaposi's sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol. 2004; 68(12): 2359-66.
Google Scholar
146
-
Jia J, Qin Y, Zhang L, Guo C, Wang Y, Yue X, et al. Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis. Mol Med Rep. 2016; 13(5): 4461-8.
Google Scholar
147
-
Chen H, Sun B, Pan S, Jiang H, Sun X. Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo. Anti-cancer drugs. 2009; 20(2): 131-40.
Google Scholar
148
-
Chen H, Sun B, Pan SH, Li J, Xue DB, Meng QH, et al. Study on anticancer effect of dihydroartemisinin on pancreatic cancer]. Zhonghua wai ke za zhi. 2009; 47(13): 1002-1005.
Google Scholar
149
-
Chen H, Sun B, Wang S, Pan S, Gao Y, Bai X, et al. Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-κB. Journal of Cancer Research and Clinical Oncology. 2010; 136(6): 897-903.
Google Scholar
150
-
Wang SJ, Gao Y, Chen H, Kong R, Jiang HC, Pan SH, et al. Dihydroartemisinin inactivates NF-κB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Letters. 2010; 293(1): 99-108.
Google Scholar
151
-
Chen H, Sun B, Wang S, Pan S, Gao Y, Bai X, et al. Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-κB pathway. J Cancer Res Clin Oncol. 2010; 136(6): 897-903.
Google Scholar
152
-
Wang SJ, Sun B, Pan SH, Chen H, Kong R, Li J, et al. Experimental study of the function and mechanism combining dihydroartemisinin and gemcitabine in treating pancreatic cancer. Zhonghua wai ke za zhi. 2010; 48(7): 530-4.
Google Scholar
153
-
Kong R, Jia G, Cheng ZX, Wang YW, Mu M, Wang SJ, et al. Dihydroartemisinin enhances Apo2L/TRAIL-mediated apoptosis in pancreatic cancer cells via ROS-mediated up-regulation of death receptor 5. PloS One. 2012; 7(5): e37222.
Google Scholar
154
-
Youns M, Efferth T, Reichling J, Fellenberg K, Bauer A, Hoheisel JD. Gene expression profiling identifies novel key players involved in the cytotoxic effect of Artesunate on pancreatic cancer cells. Biochemical Pharmacology. 2009; 78(3): 273-83.
Google Scholar
155
-
Batty KT, Davis TM, Thu LT, Binh TQ, Anh TK, Ilett KF. Selective highperformance liquid chromatographic determination of artesunate and alpha- and beta- dihydroartemisinin in patients with falciparum malaria. J Chromatogr B Biomed Appl. 1996; 677: 345-50.
Google Scholar
156
-
Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2015; 2(5): 517.
Google Scholar
157
-
Bryant KL, Mancias JD, Kimmelman AC, Der CJ. KRAS: feeding pancreatic cancer proliferation. Trends in Biochemical Sciences. 2014; 39(2): 91-100.
Google Scholar
158
-
Luo J. KRAS mutation in pancreatic cancer. InSeminars in oncology 2021; 48(1): 10-18.
Google Scholar
159
-
Du JH, Zhang HD, Ma ZJ, Ji KM. Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo. Cancer Chemotherapy and Pharmacology. 2010; 65(5): 895-902.
Google Scholar
160
-
Noori S, Hassan Z, Farsam V. Artemisinin as a Chinese medicine, selectively induces apoptosis in pancreatic tumor cell line. Chinese Journal of Integrative Medicine. 2014; 20(8): 618-23.
Google Scholar
161
-
Wang K, Zhang Z, Wang M, Cao X, Qi J, Wang D, et al. Role of GRP78 inhibiting artesunate-induced ferroptosis in KRAS mutant pancreatic cancer cells. Drug Design, Development and Therapy. 2019; 13: 2135.
Google Scholar
162
-
Niu Z, Wang M, Zhou L, Yao L, Liao Q, Zhao Y. Elevated GRP78 expression is associated with poor prognosis in patients with pancreatic cancer. Scientific Reports. 2015; 5(1): 1-2.
Google Scholar
163
-
Yuan XP, Dong M, Li X, Zhou JP. GRP78 promotes the invasion of pancreatic cancer cells by FAK and JNK. Molecular and Cellular Biochemistry. 2015; 398(1): 55-62.
Google Scholar
164
-
Dauer P, Sharma NS, Gupta VK, Durden B, Hadad R, Banerjee S, et al. ER stress sensor, glucose regulatory protein 78 regulates redox status in pancreatic cancer thereby maintaining “stemness”. Cell Death & Disease. 2019; 10(2): 1-3.
Google Scholar
165
-
Gifford JB, Huang W, Zeleniak AE, Hindoyan A, Wu H, Donahue TR, et al. Expression of GRP78, master regulator of the unfolded protein response, increases chemoresistance in pancreatic ductal adenocarcinoma. Molecular Cancer Therapeutics. 2016; 15(5): 1043-52.
Google Scholar
166
-
Gopal U, Mowery Y, Young K, Pizzo SV. Targeting cell surface GRP78 enhances pancreatic cancer radiosensitivity through YAP/TAZ protein signaling. Journal of Biological Chemistry. 2019; 294(38): 13939-52.
Google Scholar
167
-
Thakur PC, Miller-Ocuin JL, Nguyen K, Matsuda R, Singhi AD, Zeh HJ, et al. Inhibition of endoplasmic-reticulum-stress-mediated autophagy enhances the effectiveness of chemotherapeutics on pancreatic cancer. Journal of Translational Medicine. 2018; 16(1): 1-9.
Google Scholar
168
-
Palmeira A, Sousa E, Köseler A, Sabirli R, Gören T, Türkçüer İ, et al. Preliminary virtual screening studies to identify GRP78 inhibitors which may interfere with SARS-CoV-2 infection. Pharmaceuticals. 2020; 13(6): 132.
Google Scholar
169
-
Liu Y, Cui YF. Synergism of cytotoxicity effects of triptolide and artesunate combination treatment in pancreatic cancer cell lines. Asian Pacific Journal of Cancer Prevention. 2013; 14(9): 5243-8.
Google Scholar
170
-
Chen X, Kang R, Kroemer G, Tang D. Targeting ferroptosis in pancreatic cancer: a double-edged sword. Trends in Cancer. 2021; 7(10): 891-901.
Google Scholar
171
-
Du Jh, Li Jx, Zhang Hd. An oncosis-like cell death of pancreatic cancer Panc-1 cells induced by artesunate is related to generation of reactive oxygen species. China Oncology. 2000.
Google Scholar
172
-
Chen G, Guo G, Zhou X, Chen H. Potential mechanism of ferroptosis in pancreatic cancer. Oncology Letters. 2020; 19(1): 579-87.
Google Scholar
173
-
Wu J, Xu MD, Wang WJ, Shen M, Zhang Y, Qian J, et al. Artesunate Represses the Growth and Metastasis of Pancreatic Cancer Cells but Upregulates the Expression Levels of Proangiogenic Genes Through Inhibition of Protein Phosphatase 2A. Lancet. 2019.
Google Scholar
174
-
Zhang F, Gosser DK Jr, Meshnick SR. Hemin-catalyzed decomposition of artemisinin. Biochem Pharmacol. 1992; 43(8): 1805-9.
Google Scholar
175
-
Kapetanaki S, Varotsis C. Ferryl-oxo heme intermediate in the antimalarial mode of action of artemisinin. FEBS Lett. 2000; 474(2-3): 238-41.
Google Scholar
176
-
Sibmooh N, Udomsangpetch R, Kujoa A, Chantharaksri U, Mankhetkorn S. Redox reaction of artemisinin with ferrous and ferric ions in aqueous buffer. Chem Pharm Bull (Tokyo). 2001; 49(12): 1541-6.
Google Scholar
177
-
Hampton MB, Orrenius S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Letters. 1997; 414(3): 552-6.
Google Scholar
178
-
Ju HQ, Gocho T, Aguilar M, Wu M, Zhuang ZN, Fu J, et al. Mechanisms of overcoming intrinsic resistance to gemcitabine in pancreatic ductal adenocarcinoma through the redox modulation. Molecular Cancer Therapeutics. 2015; 14(3): 788-98.
Google Scholar
179
-
Donadelli M, Costanzo C, Beghelli S, et al. Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin A and gemcitabine. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2007; 1773(7): 1095-106.
Google Scholar
180
-
Arora S, Bhardwaj A, Singh S, Srivastava SK, McCellan S, Nirodi CS, et al. An undesired effect of chemotherapy: gemcitabine promotes pancreatic cancer cell invasiveness through reactive oxygen species-dependent, nuclear factor κB-and hypoxia-inducible factor 1α-mediated up-regulation of CXCR4. Journal of Biological Chemistry. 2013; 288(29): 21197-207.
Google Scholar
181
-
Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Frontiers in Pharmacology. 2018: 1371.
Google Scholar
182
-
Wang M, Wey S, Zhang Y, Ye R, Lee AS. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxidants & Redox Signaling. 2009; 11(9): 2307-16.
Google Scholar
183
-
Meshnick SR, Yang YZ, Lima V, Kuypers F, Kamchonwongpaisan S, Yuthavong Y. Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu). Antimicrobial Agents and Chemotherapy. 1993; 37(5): 1108-14.
Google Scholar
184
-
Elford HL, Freese M, Passamani E, Morris HP. Ribonucleotide Reductase and Cell Proliferation: I. Variations of ribonucleotide reductase activity with tumor growth rate in a series of rat hepatomas. Journal of Biological Chemistry. 1970; 245(20): 5228-33.
Google Scholar
185
-
Chen G, Luo Y, Warncke K, Sun Y, Yu DS, Fu H, et al. Acetylation regulates ribonucleotide reductase activity and cancer cell growth. Nature Communications. 2019; 10(1): 1-6.
Google Scholar
186
-
Greene BL, Kang G, Cui C, Bennati M, Nocera DG, Drennan CL, et al.. Ribonucleotide reductases: structure, chemistry, and metabolism suggest new therapeutic targets. Annual Review of biochemistry. 2020; 89: 45-75.
Google Scholar
187
-
Cerqueira NM, Fernandes PA, Ramos MJ. Understanding ribonucleotide reductase inactivation by gemcitabine. Chemistry–A European Journal. 2007; 13(30): 8507-15.
Google Scholar
188
-
Pereira S, Fernandes PA, Ramos MJ. Mechanism for ribonucleotide reductase inactivation by the anticancer drug gemcitabine. Journal of Computational Chemistry. 2004; 25(10): 1286-94.
Google Scholar
189
-
Jordheim LP, Guittet O, Lepoivre M, Galmarini CM, Dumontet C, Increased expression of the large subunit of ribonucleotide reductase is involved in resistance to gemcitabine in human mammary adenocarcinoma cells. Molecular Cancer Therapeutics. 2005; 4(8): 1268-76.
Google Scholar
190
-
Davidson JD, Ma L, Flagella M, Geeganage S, Gelbert LM, Slapak CA. An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Research. 2004; 64(11): 3761-6.
Google Scholar
191
-
Minami K, Shinsato Y, Yamamoto M, Takahashi H, Zhang S, Nishizawa Y, et al. Ribonucleotide reductase is an effective target to overcome gemcitabine resistance in gemcitabine-resistant pancreatic cancer cells with dual resistant factors. Journal of Pharmacological Sciences. 2015; 127(3): 319-25.
Google Scholar
192
-
Yokoi K, Fidler IJ. Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine. Clinical Cancer Research. 2004; 10(7): 2299-306.
Google Scholar
193
-
Schniewind B, Christgen M, Kurdow R, Haye S, Kremer B, Kalthoff H, et al. Resistance of pancreatic cancer to gemcitabine treatment is dependent on mitochondria‐mediated apoptosis. International Journal of Cancer. 2004; 109(2): 182-8.
Google Scholar
194
-
Binenbaum Y, Na’ara S, Gil Z. Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resistance Updates. 2015; 23: 55-68.
Google Scholar
195
-
Ilamathi M, Prabu PC, Ayyappa KA, Sivaramakrishnan V. Artesunate obliterates experimental hepatocellular carcinoma in rats through suppression of IL-6-JAK-STAT signalling. Biomedicine & Pharmacotherapy. 2016; 82: 72-9.
Google Scholar
196
-
Ilamathi M, Santhosh S, Sivaramakrishnan V. Artesunate as an anti-cancer agent targets stat-3 and favorably suppresses hepatocellular carcinoma. Current Topics in Medicinal Chemistry. 2016; 16(22): 2453-63.
Google Scholar
197
-
Kuang M, Cen Y, Qin R, Shang S, Zhai Z, Liu C, et al. Artesunate attenuates pro-inflammatory cytokine release from macrophages by inhibiting TLR4-mediated autophagic activation via the TRAF6-Beclin1-PI3KC3 pathway. Cellular Physiology and Biochemistry. 2018; 47(2): 475-88.
Google Scholar
198
-
Dolivo D, Weathers P, Dominko T. Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics. Acta Pharmaceutica Sinica B. 2021; 11(2): 322-39.
Google Scholar
199
-
Lai L, Chen Y, Tian X, Li X, Zhang X, Lei J, et al. Artesunate alleviates hepatic fibrosis induced by multiple pathogenic factors and inflammation through the inhibition of LPS/TLR4/NF-κB signaling pathway in rats. European Journal of Pharmacology. 2015; 765: 234-41.
Google Scholar
200
-
Longxi P, Buwu F, Yuan W, Sinan G. Expression of p53 in the effects of artesunate on induction of apoptosis and inhibition of proliferation in rat primary hepatic stellate cells. PLoS One. 2011; 6(10): e26500.
Google Scholar
201
-
Bai R, Zhang H, Huang C. Effect of Artesunate on Akt/GSK-3β/β-catenin signal pathway in human hepatic stellate cells. China Pharmacist. 2017: 1192-5.
Google Scholar
202
-
Nong X, Rajbanshi G, Chen L, Li J, Li Z, Liu T, et al. Effect of artesunate and relation with TGF-β1 and SMAD3 signaling on experimental hypertrophic scar model in rabbit ear. Archives of Dermatological Research. 2019; 311(10): 761-72.
Google Scholar
203
-
Wang C, Xuan X, Yao W, Huang G, Jin J. Anti-profibrotic effects of artesunate on bleomycin-induced pulmonary fibrosis in Sprague Dawley rats. Molecular Medicine Reports. 2015; 12(1): 1291-7.
Google Scholar
204
-
Liu Y, Huang G, Mo B, Wang C. Artesunate ameliorates lung fibrosis via inhibiting the Notch signaling pathway. Experimental and Therapeutic Medicine. 2017; 14(1): 561-6.
Google Scholar
205
-
Wan Q, Chen H, Li X, Yan L, Sun Y, Wang J. Artesunate inhibits fibroblasts proliferation and reduces surgery-induced epidural fibrosis via the autophagy-mediated p53/p21waf1/cip1 pathway. European Journal of Pharmacology. 2019; 842: 197-207.
Google Scholar
206





