##plugins.themes.bootstrap3.article.main##

Background: The presence of anti-Saccharomyces cerevisiae antibodies (ASCA) has been reported in the serum of patients with several immune-inflammatory diseases.

Objective: To evaluate the presence of ASCA in patients with non-IgE-mediated hypersensitivity.

Methods: A group of 222 patients with non-IgE-mediated hypersensitivity was divided into three groups according to dermatologic, gastrointestinal, and respiratory symptoms. Group D was composed of 163 patients with dermatologic symptoms diagnosed as intrinsic atopic dermatitis and/or non-IgE-mediated urticaria. Group G was composed of 23 patients diagnosed with non-IgE-mediated gastrointestinal food allergies. Group R was composed of 36 patients with respiratory symptoms diagnosed as non-IgE-mediated rhinitis and/or non-IgE-mediated asthma.

Results: The Wilcoxon-Mann-Whitney U test comparing the precipitin’s titers of group G and group D showed a non-significant p-value of 0.83366. The Wilcoxon-Mann-Whitney U test comparing the precipitin’s titers of group R and group G showed a significant p-value of 0.00034. The Wilcoxon-Mann-Whitney U test comparing the precipitin’s titers of group R and group D showed a significant p-value < 0.0001.

Conclusion: The patients with respiratory symptoms diagnosed as non-IgE-mediated rhinitis and/or asthma presented significantly less humoral immunoreactivity against S. cerevisiae than patients with non-IgE-mediated food allergy and patients with intrinsic atopic dermatitis and/or non-IgE-mediated urticaria. The elevation of ASCA titers may be an unspecific marker of intestinal hyperpermeability, and possibly may participate in Gell and Coomb’s types II and/or type III hypersensitivity reactions responsible for the patient’s dermatologic and gastrointestinal symptoms.

References

  1. Sicard D, Legras J-L. Bread, beer and wine: Yeast domestication in the Saccharomyces sensu stricto complex. Comptes Rendus Biologies. 2011; 334(3): 229-326.
     Google Scholar
  2. McGovern PE, Zhang J, Tang J, Zhang Z, Hall GR, Moreau RA, et al. Fermented beverages of pre- and proto-historic China. Proc Natl Acad Sci USA. 2004; 101(51): 17593-17598.
     Google Scholar
  3. Pronk JT, Y-de-Steensma H, Van-Dijken JP. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast. 1996; 12(16): 1607-1633.
     Google Scholar
  4. Morgan CJ, Badawy AA-B. Alcohol-induced euphoria: exclusion of serotonin. Alcohol and Alcoholism. 2001; 36(1): 22-25.
     Google Scholar
  5. Rosenbaum M, McCarty T. Alcohol prescription by surgeons in the prevention and treatment of delirium tremens: historic and current practice. General Hospital Psychiatry. 2002; 24(4): 257-259.
     Google Scholar
  6. Lahue C, Madden A, Dunn R, Smukowski-Heil C. History and Domestication of Saccharomyces cerevisiae in Bread Baking. Frontiers in Genetics. 2020; 11: 584718.
     Google Scholar
  7. Gänzle MG. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology. 2014; 37: 2-10.
     Google Scholar
  8. Frey CN. History and Development of the Modern Yeast Industry. Industrial & Engineering Chemistry. 1930; 22(11): 1154-1162.
     Google Scholar
  9. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, et al. Interactions Between Commensal Fungi and the C-Type Lectin Receptor Dectin-1 Influence Colitis. Science. 2012; 336(6086): 1314-1317.
     Google Scholar
  10. Jiang TT, Shao TY, Ang WXG, Kinder JM, Turner LH, Pham G, et al. Commensal Fungi Recapitulate the Protective Benefits of Intestinal Bacteria. Cell Host Microbe. 2017; 22(6): 809-16.e4.
     Google Scholar
  11. Eppinga H, Thio HB, Schreurs MWJ, Blakaj B, Tahitu RI, Konstantinov SR, et al. Depletion of Saccharomyces cerevisiae in psoriasis patients, restored by Dimethylfumarate therapy (DMF). PLOS ONE. 2017; 12(5): e0176955.
     Google Scholar
  12. Kärenlampi SO, Hynninen PH. Formation of benzoic acid from biphenyl in the yeast Saccharomyces cerevisiae. Chemosphere. 1981; 10(4): 391-396.
     Google Scholar
  13. Hannuksela M, Haahtela T. Hypersensitivity reactions to food additives. Allergy. 1987; 42(8): 561-575.
     Google Scholar
  14. Salazar F, Brown GD. Antifungal Innate Immunity: A Perspective from the Last 10 Years. Journal of Innate Immunity. 2018; 10(5-6): 373-397.
     Google Scholar
  15. Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nature Reviews Immunology. 2006; 6(1): 33-43.
     Google Scholar
  16. Shokri H, Asadi F, Khosravi AR. Isolation of β -glucan from the cell wall of Saccharomyces cerevisiae. Natural Product Research. 2008; 22(5): 414-421.
     Google Scholar
  17. Aslan M, Kocazeybek B, Celik A, Erzin Y, Hatemi I, Hatemi G, et al. Anti-Saccharomyces cerevisiae (ASCA) antibody levels in a subgroup of patients with ulcerative colitis, Crohn's disease, GI Behcet, and GI tuberculosis: Correlations with disease duration, activity, and extension. International Journal of Infectious Diseases. 2010; 14: e117-e8.
     Google Scholar
  18. Kocazeybek B, Aslan M, Erzin Y, Celik A, Hatemi I, Hatemi G, et al. Clinical utility of perinuclear antineutrophil cytoplasmic antibodies and anti-Saccharomyces cerevisiae antibodies for discriminating specific intestinal inflammations. International Journal of Infectious Diseases. 2010; 14(sup. 1): e118.
     Google Scholar
  19. Sairenji T, Collins KL, Evans DV. An Update on Inflammatory Bowel Disease. Primary Care: Clinics in Office Practice. 2017; 44(4): 673-692.
     Google Scholar
  20. Lidar M, Langevitz P, Barzilai O, Ram M, Porat-Katz B-S, Bizzaro N, et al. Infectious Serologies and Autoantibodies in Inflammatory Bowel Disease. Annals of the New York Academy of Sciences. 2009; 1173; 640-648.
     Google Scholar
  21. Main J, McKenzie H, Yeaman GR, Kerr MA, Robson D, Pennington CR, et al. Antibody to Saccharomyces cerevisiae (bakers' yeast) in Crohn's disease. BMJ. 1988; 297(6656): 1105-1106.
     Google Scholar
  22. Seibold F, Konrad A, Flogerzi B, Seibold-Schmid B, Arni S, Jüliger S, et al. Genetic variants of the mannan-binding lectin are associated with immune reactivity to mannans in Crohn’s disease. Gastroenterology. 2004; 127(4): 1076-1084.
     Google Scholar
  23. Shor DB-A, Orbach H, Boaz M, Altman A, Anaya J-M, Bizzaro N, et al. Gastrointestinal-associated autoantibodies in different autoimmune diseases. Am J Clin Exp Immunol. 2012; 1(1): 49-55.
     Google Scholar
  24. Yazıcı D, Aydın SZ, Yavuz D, Tarçın Ö, Deyneli O, Direskeneli H, et al. Anti-Saccharomyces cerevisiae antibodies (ASCA) are elevated in autoimmune thyroid disease. Endocrine. 2010; 38(2): 194-198.
     Google Scholar
  25. Dai H, Li Z, Zhang Y, Lv P, Gao X-M. Elevated Levels of Serum IgA Against Saccharomyces cerevisiae Mannan in Patients with Rheumatoid Arthritis. Cellular & Molecular Immunology. 2009; 6(5): 361-366.
     Google Scholar
  26. Zschiesche P, Nenoff U, Bauroth A, Stangl A, Haustein U-F. Analyse de la fréquence des tests IgE spécifiques positifs pour les levures et moisissures dans l'eczéma atopique. Revue Française d'Allergologie. 1995; 18: 425-428. French.
     Google Scholar
  27. Nenoff P, Müller B, Sander U, Kunze G, Bröker M, Haustein UF. IgG and IgE immune response against the surface glycoprotein gp200 of Saccharomyces cerevisiae in patients with atopic dermatitis. Mycopathologia. 2001; 152(1): 15-21.
     Google Scholar
  28. Horner WE, Helbling A, Salvaggio JE, Lehrer SB. Fungal allergens. Clin Microbiol Rev. 1995; 8(2): 161-179.
     Google Scholar
  29. Romani L. Immunity to fungal infections. Nature Reviews Immunology. 2004; 4(1): 11-24.
     Google Scholar
  30. Richardson M, Page I. Role of Serological Tests in the Diagnosis of Mold Infections. Curr Fungal Infect Rep. 2018; 12(3): 127-136.
     Google Scholar
  31. Zimmer B.L, Pappagianis D. Immunoaffinity isolation and partial characterization of the Coccidioides immitis antigen detected by the tube precipitin and immunodiffusion-tube precipitin tests. Journal of Clinical Microbiology. 1989; 27(8): 1759-1766.
     Google Scholar
  32. Lease ED, Alexander BD. Fungal diagnostics in pneumonia. Semin Respir Crit Care Med. 2011; 32(6): 663-72.
     Google Scholar
  33. Pappagianis D, Zimmer BL. Serology of coccidioidomycosis. Clinical Microbiology Reviews. 1990; 3(3): 247-268.
     Google Scholar
  34. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013; 310(20): 2191-2194.
     Google Scholar
  35. Olivier CE, Pinto DG, Teixeira APM, Santana JLS, Santos RAPGS, Lima RPS. Intrinsic Atopic Dermatitis: Titration of Precipitins in the Screening of Food Allergens for Prescription of Elimination Diets and Desensitization Strategies. European Journal of Clinical Medicine. 2021; 2(6): 1-9.
     Google Scholar
  36. Olivier CE, Pinto DG, Teixeira APM, Santana JLS, Santos RAPGS, Lima RPS. Self-imposed food restriction and oral food challenges are correlated with precipitin's accuracy in the diagnosis of non-IgE-mediated food-related adulthood acute episodes of urticaria. Journal of Allergy & Therapy. 2021; 12(8): 1-8.
     Google Scholar
  37. Olivier CE, Pinto DG, Teixeira APM, Santana JLS, Santos RAPGS, Lima RPS. Immunoreactivity against Dermatophagoides pteronyssinus Assessed by the Leukocyte Adherence Inhibition Test in Patients with Intrinsic Atopic Dermatitis and Correlated “Intrinsic” Non–IgE-mediated Allergic Conditions. European Journal of Clinical Medicine. 2021; 2(6): 45-50.
     Google Scholar
  38. Olivier CE, Pinto DG, Teixeira APM, Santana JLS, Santos RAPGS, Lima RPS. Contribution of the Leukocyte Adherence Inhibition Test to the Evaluation of Cellular Immunoreactivity against Latex Extracts for Non-IgE-Mediated Latex-Fruit-Pollen Syndrome in Allergic Candidates to Exclusion Diets and Allergic Desensitization. European Journal of Clinical Medicine. 2022; 3(1): 11-17.
     Google Scholar
  39. Olivier CE, Pinto DG, Teixeira APM, Santana JLS, Santos RAPGS, Lima RPS. Contribution of the Leukocyte Adherence Inhibition Test for the evaluation of immunoreactivity against gluten extracts in non-IgE-mediated / non-autoimmune Gluten-Related Disorders. European Journal of Clinical Medicine. 2022; 3(2): 1-7.
     Google Scholar
  40. Olivier CE, Pinto DG, Teixeira APM, Santana JLS, Santos RAPGS, Lima RPS. Leukocyte Adherence Inhibition Test to the assessment of Immunoreactivity Against Cow’s Milk Proteins in Non-IgE-Mediated Gastrointestinal Food Allergy. European Journal of Clinical Medicine. 2022; 3(2): 38-43.
     Google Scholar
  41. Olivier CE, Argentão DGP, Santos RAPG, Silva MD, Lima RPS, Zollner RL. Skin scrape test: an inexpensive and painless skin test for recognition of immediate hypersensitivity in children and adults. The Open Allergy Journal. 2013; 6: 9-17.
     Google Scholar
  42. Williams CA, Chase MW. n: Methods in Immunology and Immunochemistry, Reactions of Antibodies with Soluble Antigens (volume 3), Precipitation Reactions (chapter 13), Academic Press; 1972: 1-102.
     Google Scholar
  43. Kim H-Y. Statistical notes for clinical researchers: Nonparametric statistical methods: 1. Nonparametric methods for comparing two groups. Restorative Dentistry & Endodontics. 2014; 39(3): 235-239.
     Google Scholar
  44. Fay MP, Proschan MA. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Surv. 2010; 4: 1-39.
     Google Scholar
  45. Behçet H. Über rezidivierende aphthose, durch ein und Virus verursachte Geschwure am Mund, am Auge und an den Genitalien. Derm Wochenschr. 1937; 105: 1152-1157. German.
     Google Scholar
  46. Behçet H. Considerations sur les lésions aphteuses de la bouche et des parties génitales, ainsi que sur les manifestations oculaires d'origine probablement virutique et observations concernant leur foyer d'infection. Bulletin de la Société Française de Dermatologie et de Syphiligraphie. 1938; 45: 420-433. French,
     Google Scholar
  47. Behcet H. Some Observations on the Clinical Picture of the so-called Triple Symptom Complex. Dermatology. 1940; 81(2): 73-83.
     Google Scholar
  48. Adams F. The genuine work of Hippocrates. editor. New York: Williams Wood and Company, 1886: 390.
     Google Scholar
  49. Baba S, Maruta M, Ando K, Teramoto T, Endo I. Intestinal Behçet's disease: report of five cases. Dis Colon Rectum. 1976; 19(5): 428-440.
     Google Scholar
  50. Malik TF, Aurelio DM. Extraintestinal Manifestations of Inflammatory Bowel Disease. StatPearls Publishing LLC.; Bookshelf ID: NBK568797. 2022.
     Google Scholar
  51. Oshitani N, Hato F, Jinno Y, Sawa Y, Nakamura S, Matsumoto T, et al. IgG subclasses of anti-Saccharomyces cerevisiae antibody in inflammatory bowel disease. Eur J Clin Invest. 2001; 31(3): 221-5.
     Google Scholar
  52. Choi CH, Kim TI, Kim BC, Shin SJ, Lee SK, Kim WH, et al. Anti-Saccharomyces cerevisiae antibody in intestinal Behçet's disease patients: relation to clinical course. Dis Colon Rectum. 2006; 49(12): 1849-59.
     Google Scholar
  53. Ruemmele FM, Targan SR, Levy G, Dubinsky M, Braun J, Seidman EG. Diagnostic accuracy of serological assays in pediatric inflammatory bowel disease. Gastroenterology. 1998; 115(4): 822-829.
     Google Scholar
  54. Cameron DR, Cooper DG, Neufeld RJ. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol. 1988; 54(6): 1420-1425.
     Google Scholar
  55. Csáki KF. Synthetic surfactant food additives can cause intestinal barrier dysfunction. Med Hypotheses. 2011; 76(5): 676-681.
     Google Scholar
  56. Rapin JR, Wiernsperger N. Possible links between intestinal permeability and food processing: A potential therapeutic niche for glutamine. Clinics (São Paulo). 2010; 65(6): 635-643.
     Google Scholar
  57. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015; 519(7541): 92-96.
     Google Scholar
  58. De-Martinis M, Sirufo MM, Suppa M, Ginaldi L. New Perspectives in Food Allergy. Int J Mol Sci. 2020; 21(4): 1474.
     Google Scholar
  59. Olivier CE. Considering intestinal permeability and immune metabolism in the treatment of food allergies. European Journal of Clinical Medicine. 2022; 3(3): 13-18.
     Google Scholar
  60. Barclay GR, McKenzie H, Pennington J, Parratt D, Pennington CR. The effect of dietary yeast on the activity of stable chronic Crohn's disease. Scand J Gastroenterol. 1992; 27(3): 196-200.
     Google Scholar
  61. Draper LR, Gyure LA, Hall JG, Robertson D. Effect of alcohol on the integrity of the intestinal epithelium. Gut. 1983; 24(5): 399-404.
     Google Scholar
  62. Olivier CE, Pinto DG, Lima RPS, Teixeira APM, Santana JLS. Self-imposed food restriction and oral food challenges are correlated with precipitin's accuracy in the diagnosis of non-IgE-mediated food-related adulthood acute episodes of urticaria. Journal of Allergy & Therapy. 2021; 12(8): 1-8.
     Google Scholar


Most read articles by the same author(s)