Human Polymorphonuclear Neutrophil Phenotypes Generated in vitro

##plugins.themes.bootstrap3.article.main##

  •   Fernando Marcos Rodríguez

  •   Claudia Leonor Carabajal-Miotti

  •   Susana Graciela Ruiz de Frattari

  •   Adriana Haydee Vargas

  •   Natalio Emilio González-Silva

  •   Ivon Teresa Clara Novak

Abstract


Background: There are a variety of polymorphonuclear neutrophil phenotypes described in different species and health or disease situations. 




Objective: Study human neutrophil phenotypes generated in vitroMethods: Heparinized human blood samples were collected with ethical consent. Polymorphonuclear neutrophils purification and autologous cultures was performed. Neutrophil stimulation was performed with LPS, fMLP or OVA. Immunofluorescence was applied. 




Results: “Polymorphonuclear neutrophil-antigen presenting cell” profile was generated in vitro, expressing CD80, CD86 and HLA-DR molecules. Immunofluorescence analysis show: CD80 expression, significant differences between CTFT control and CTFT fMLP (p<0.05), CTFT control and CTFT OVA (p<0.0001). CD86 expression, significant differences between CTFT control and CTFT fMLP (p<0.05), CTFT control and CTFT LPS (p<0.05), CTFT control and CTFT OVA (p<0.0001). HLA-DR expression, significant differences between CTFT control and CTFT LPS (p<0.05). About “Polymorphonuclear neutrophil-CD4-CD45RO” profile, analysis show: CD4 expression, significant differences between CTFT control and CTFT fMLP (p<0.05). CD45RO expression, no significant differences. “Polymorphonuclear neutrophil-antigen presenting cell” phenotype, released NETs with CD80, CD86 at 30 minutes: paired control samples (7.4%), stimulated with LPS (12.69%), fMLP (16.67%) and OVA (18.47%). HLA-DR expression in NETs, at 30 minutes, in paired control samples (0%), stimulated with LPS (16.17%). At 17 hs, in paired control samples (0%), with OVA stimulation (4.54%). “Polymorphonuclear neutrophil-CD4-CD45RO” phenotype, released NETs expressing CD4 and C45RO molecules. At 30 minutes, in paired control samples (0%), stimulated with LPS (7.67%), fMLP (6.38%) and OVA (0%).




Conclusions: Molecules expressed by phenotypes can play a relevant role by influencing cellular microenvironment and can be taken into account as possible therapeutic targets.



Keywords: Human neutrophil, NETs, polymorphonuclear neutrophil phenotypes

References

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil Extracellular Traps Kill Bacteria. Science. 2004; 303(5663): 1532–5.

Takashima A, Yao Y. Neutrophil plasticity: acquisition of phenotype and functionality of antigen-presenting cell. J Leukoc Biol. 2015; 98: 1–8.

Rodriguez FM, Novak ITC. What about the neutrophils phenotypes? Hematol Med Oncol. 2017; 2(3): 1–6.

Hellebrekers P, Vrisekoop N, Koenderman L. Neutrophil phenotypes in health and disease. Eur J Clin Invest. 2018; 48: e12943.

Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol. 2013; 17(3): 638–50.

Lakschevitz FS, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016; 342(2): 200–9.

Feuk-Lagerstedt E, Jordan ET, Leffler H, Dahlgren C, Karlsson A. Identification of CD66a and CD66b as the major galectin-3 receptor candidates in human neutrophils. J Immunol. 1999; 163(10): 5592–8.

Makoni M, Eckert J, Anne Pereira H, Nizet V, Lawrence SM. Alterations in neonatal neutrophil function attributable to increased immature forms. Early Hum Dev. 2016; 103: 1–7

Khan SY, Kelher MR, Heal JM, Blumberg N, Boshkov LK, Phipps R, et al. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood. 2006; 108(7): 2455–62.

Murphy K, Weaver C. Janeway’s Immunbiology. 9th ed. Garland Science, editor. New York, USA: Taylor and Francis Group; 2017.

Smyth CM, Logan G, Boadle R, Rowe PB, Smythe JA, Alexander IE. Differential subcellular localization of CD86 in human PBMC-derived macrophages and DCs, and ultrastructural characterization by immuno-electron microscopy. Int Immunol. 2005; 17(2): 123–32.

Sandilands GP, McCrae J, Hill K, Perry M, Baxter D. Major histocompatibility complex class II (DR) antigen and costimulatory molecules on in vitro and in vivo activated human polymorphonuclear neutrophils. Immunology. 2006; 119(4): 562–71.

Sandilands GP, Ahmed Z, Perry N, Davison M, Lupton A, Young B. Cross-linking of neutrophil CD11b results in rapid cell surface expression of molecules required for antigen presentation and T-cell activation. Immunology. 2005; 114(3): 354–68.

Ishikawa F, Miyazaki S. New biodefense strategies by neutrophils. Arch Immunol Ther Exp (Warsz). 2005; 53(3): 226–33.

Iking-Konert C, Vogt S, Radsak M, Wagner C, Hänsch GM, Andrassy K. Polymorphonuclear neutrophils in Wegener’s granulomatosis acquire characteristics of antigen presenting cells. Kidney Int. 2001; 60(6): 2247–62.

Cross A, Bucknall RC, Cassatella MA, Edwards SW, Moots RJ. Synovial Fluid Neutrophils Transcribe and Express Class II Major Histocompatibility Complex Molecules in Rheumatoid Arthritis. Arthritis Rheum. 2003; 48(10): 2796–806.

Matsushima H, Geng S, Lu R, Okamoto T, Yao Y, Mayuzumi N, et al. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood. 2013; 121(10): 1677–89.

Culshaw S, Millington OR, Brewer JM, McInnes IB. Murine neutrophils present Class II restricted antigen. Immunol Lett. 2008; 118(1): 49–54.

Ostanin D V, Kurmaeva E, Furr K, Bao R, Hoffman J, Berney S, et al. Acquisition of antigen-presenting functions by neutrophils isolated from mice with chronic colitis. J Immunol. 2012; 188(3): 1491–502.

Abdallah DSA, Egan CE, Butcher BA, Denkers EY. Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int Immunol. 2011; 23(5): 317–26.

Biswas P, Mantelli B, Sica A, Malnati M, Panzeri C, Saccani A, et al. Expression of CD4 on human peripheral blood neutrophils. Blood. 2003; 101(11): 4452–6.

Pulido R, Alvarez V, Mollinedo F, Sánchez-Madrid F. Biochemical and functional characterization of the leucocyte tyrosine phosphatase CD45 (CD45RO, 180 kD) from human neutrophils. In vivo upregulation of CD45RO plasma membrane expression on patients undergoing haemodialysis. Clin Exp Immunol. 1992; 87(2): 329–35.

Lucey DR, Dorsky DI, Nicholson-Weller A, Weller PF. Human eosinophils express CD4 protein and bind human immunodeficiency virus 1 gp120. J Exp Med. 1989; 169(1): 327–32.

Zauli G, Furlini G, Vitale M, Re MC, Gibellini D, Zamai L, et al. A subset of human CD34+ hematopoietic progenitors express low levels of CD4, the high-affinity receptor for human immunodeficiency virus-type 1. Blood. 1994; 84(6): 1896–905.

Louache F, Debili N, Marandin A, Coulombel L, Vainchenker W. Expression of CD4 by human hematopoietic progenitors. Blood. 1994; 84(10): 3344–55.

Lusso P, De Maria A, Malnati M, Lori F, DeRocco SE, Baseler M, et al. Induction of CD4 and susceptibility to HIV-1 infection in human CD8+ T lymphocytes by human herpesvirus 6. Nature. 1991; 349(6309): 533–5.

Lusso P, Malnati MS, Garzino-Demo A, Crowley RW, Long EO, Gallo RC. Infection of natural killer cells by human herpesvirus 6. Nature. 1993; 362(6419): 458–62.

Li Y, Li L, Wadley R, Reddel SW, Qi JC, Archis C, et al. Mast cells/basophils in the peripheral blood of allergic individuals who are HIV-1 susceptible due to their surface expression of CD4 and the chemokine receptors CCR3, CCR5, and CXCR4. Blood. 2001; 97(11): 3484–90.

Lusso P, Garzino-Demo A, Crowley RW, Malnati MS. Infection of gamma/delta T lymphocytes by human herpesvirus 6: transcriptional induction of CD4 and susceptibility to HIV infection. J Exp Med. 1995; 181(4): 1303–10.

Rheinländer A, Schraven B, Bommhardt U. CD45 in human physiology and clinical medicine. Immunol Lett. 2018; 196: 22–32.

Abbas AK, Lichtman AH, Pillai S. Inmunología celular y molecular. 7th ed. Barcelona, España: Elsevier; 2012. Spanish.

Yu CL, Yu HS, Sun KH, Hsieh SC, Tsai CY. Anti-CD45 isoform antibodies enhance phagocytosis and gene expression of IL-8 and TNF-α in human neutrophils by differential suppression on protein tyrosine phosphorylation and p56lck tyrosine kinase. Clin Exp Immunol. 2002; 129(1): 78–85.

Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation. Front Immunol. 2016; 7: 302.

Sollberger G, Tilley DO, Zychlinsky A. Neutrophil Extracellular Traps: The Biology of Chromatin Externalization. Dev Cell. 2018; 44(5): 542–53.

Van Avondt K, Hartl D. Mechanisms and disease relevance of neutrophil extracellular trap formation. Eur J Clin Invest. 2018; 48 Suppl 2: e12919.

Rodriguez FM, Novak ITC. Costimulatory Molecules CD80 and CD86 Colocalized in Neutrophil Extracellular Traps (NETs). J Immunol Infect Dis. 2016; 3(1): 1–9.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open source platform for biological image analysis. Nat Methods. 2012; 9(7): 676–82.

Schneider C a, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012; 9(7): 671–5.

Potapova TA, Sivakumar S, Flynn JN, Li R, Gorbsky GJ. Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Mol Biol Cell. 2011; 22(8): 1191–206.

McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A. Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle. 2014; 13(9): 1400–12.

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat versión 2020. Centro de Transferencia InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Argentina; 2020. Available from: http://www.infostat.com.ar. Spanish.

Kubes P. The enigmatic neutrophil: what we do not know. Cell Tissue Res. 2018; 371(3): 399–406.

Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on neutrophil function in severe inflammation. Front Immunol. 2018; 9(OCT): 1–14.

Brinkmann V. Neutrophil Extracellular Traps in the Second Decade. J Innate Immun. 2018; 10(5–6): 414–21.

Sørensen OE, Borregaard N. Neutrophil extracellular traps - The dark side of neutrophils. J Clin Invest. 2016; 126(5): 1612–20.

Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017; 23(3): 279–87.

Kimball AS, Obi AT, Diaz JA, Henke PK. The emerging role of NETs in venous thrombosis and immunothrombosis. Front Immunol. 2016; 7: 1–8.

Laridan E, Martinod K, De Meyer SF. Neutrophil Extracellular Traps in Arterial and Venous Thrombosis. Semin Thromb Hemost. 2019; 45(1): 86–93.

Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019; 133(20): 2178–85.

Knight JS, Carmona-Rivera C, Kaplan MJ. Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front Immunol. 2012; 3: 1–12.

Apel F, Zychlinsky A, Kenny EF. The role of neutrophil extracellular traps in rheumatic diseases. Nat Rev Rheumatol. 2018; 14(8): 467–75.

Li Y, Wang W, Yang F, Xu Y, Feng C, Zhao Y. The regulatory roles of neutrophils in adaptive immunity. Cell Commun Signal. 2019; 17(1): 1–11.

Li Y, Zhu L, Chu Z, Yang T, Sun H-X, Yang F, et al. Characterization and biological significance of IL-23-induced neutrophil polarization. Cell Mol Immunol. 2018; 15(5): 518–30.

Sun B, Zhu L, Tao Y, Sun H-X, Li Y, Wang P, et al. Characterization and allergic role of IL-33-induced neutrophil polarization. Cell Mol Immunol. 2018; 15(8): 782–93.

Xu Y, Zhang Q, Zhao Y. The functional diversity of neutrophils and clustered polarization of immunity. Cell Mol Immunol. 2020; 17(11): 1212–4.

Vono M, Lin A, Norrby-Teglund A, Koup RA, Liang F, Loré K. Neutrophils acquire the capacity for antigen presentation to memory CD4+ T cells in vitro and ex vivo. Blood. 2017; 129(14): 1991–2001.

Lok LSC, Dennison TW, Mahbubani KM, Saeb-Parsy K, Chilvers ER, Clatworthy MR. Phenotypically distinct neutrophils patrol uninfected human and mouse lymph nodes. Proc Natl Acad Sci U S A. 2019; 116(38): 19083–9.

Liles WC, Ledbetter JA, Waltersdorph AW, Klebanoff SJ. Cross-linking of CD45 enhances activation of the respiratory burst in response to specific stimuli in human phagocytes. J Immunol. 1995; 155(4): 2175–84.

Harvath L, Balke JA, Christiansen NP, Russell AA, Skubitz KM. Selected antibodies to leukocyte common antigen (CD45) inhibit human neutrophil chemotaxis. J Immunol. 1991; 146(3): 949–57.

Gao H, Henderson A, Flynn DC, Landreth KS, Ericson SG. Effects of the protein tyrosine phosphatase CD45 on FcgammaRIIa signaling and neutrophil function. Exp Hematol. 2000; 28(9): 1062–70.

Bourguignon LYW, Suchard SJ, Nagpal ML, Glenney JR. A t-lymphoma transmembrane glycoprotein (gp180) is linked to the cytoskeletal protein, fodrin. J Cell Biol. 1985; 101(2): 477–87.

Petretto A, Bruschi M, Pratesi F, Croia C, Candiano G, Ghiggeri G, et al. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One. 2019; 14(7): 1–18.

Yu Y, Koehn CD, Yue Y, Li S, Thiele GM, Hearth-Holmes MP, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015; 15(4): 401–10.

Kamoshida G, Kikuchi-Ueda T, Nishida S, Tansho-Nagakawa S, Kikuchi H, Ubagai T, et al. Spontaneous formation of neutrophil extracellular traps in serum-free culture conditions. FEBS Open Bio. 2017; 7(6): 877–86.

Maletto BA, Ropolo AS, Alignani DO, Liscovsky M V., Ranocchia RP, Moron VG, et al. Presence of neutrophil-bearing antigen in lymphoid organs of immune mice. Blood. 2006; 108(9): 3094–102.

Castell SD, Harman MF, Morón G, Maletto BA, Pistoresi-Palencia MC. Neutrophils Which Migrate to Lymph Nodes Modulate CD4+ T Cell Response by a PD-L1 Dependent Mechanism. Front Immunol. 2019; 10(JAN): 105.

Cunha AA Da, Porto BN, Nuñez NK, Souza RG, Vargas MHM, Silveira JS, et al. Extracellular DNA traps in bronchoalveolar fluid from a murine eosinophilic pulmonary response. Allergy Eur J Allergy Clin Immunol. 2014; 69(12): 1696–700.

Rodriguez FM, Novak ITC. May NETs Contain Costimulatory Molecules? J Immunobiol. 2016; 01(04): 113.

Horn LA, Long TM, Atkinson R, Clements V, Ostrand-Rosenberg S. Soluble CD80 protein delays tumor growth and promotes tumor infiltrating lymphocytes. Cancer Immunol Res. 2017; 6(1): 59–68.

Marín LA, Moya-Quiles MR, Miras M, Minguela A, Bermejo J, Ramírez P, et al. Evolution of soluble forms of CD86, CD95 and CD95L molecules in liver transplant recipients. Transpl Immunol. 2012; 26(2–3): 94–100.

Simone R, Pesce G, Antola P, Rumbullaku M, Bagnasco M, Bizzaro N, et al. The soluble form of CTLA-4 from serum of patients with autoimmune diseases regulates T-cell responses. Biomed Res Int. 2014; 2014: 1–9.

Wong CK, Lit LCW, Tam LS, Li EK, Lam CWK. Aberrant production of soluble costimulatory molecules CTLA-4, CD28, CD80 and CD86 in patients with systemic lupus erythematosus. Rheumatology. 2005; 44(8): 989–94.

Jendro M, Goronzy JJ, Weyand CM. Structural and functional characterization of hla-dr molecules circulating in the serum. Autoimmunity. 1991; 8(4): 289–96.

Bakela K, Athanassakis I. Soluble major histocompatibility complex molecules in immune regulation: highlighting class II antigens. Immunology. 2018; 153(3): 315–24.

Joly E, Hudrisier D. What is trogocytosis and what is its purpose? Nat Immunol. 2003; 4(9): 815.

Berthelot J-M, Le Goff B, Neel A, Maugars Y, Hamidou M. NETosis: At the crossroads of rheumatoid arthritis, lupus, and vasculitis. Jt bone spine. 2017; 84(3): 255–62.

Haim H, Si Z, Madani N, Wang L, Courter JR, Princiotto A, et al. Soluble CD4 and CD4-mimetic compounds inhibit HIV-1 infection by induction of a short-lived activated state. PLoS Pathog. 2009; 5(4): 1–14.

Mitchell GB, Khandaker MH, Rahimpour R, Xu L, Lazarovits AI, Pickering JG, et al. CD45 modulation of CXCR1 and CXCR2 in human polymorphonuclear leukocytes. Eur J Immunol. 1999; 29(5): 1467–76.

Mantovani A, Cassatella M, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011; 11(8): 519–31.

Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015; 10(4): 562–73.

##plugins.themes.bootstrap3.article.details##

How to Cite
Rodríguez, F. M., Carabajal-Miotti, C. L., Ruiz de Frattari, S. G., Vargas, A. H., González-Silva, N. E., & Novak, I. T. C. (2022). Human Polymorphonuclear Neutrophil Phenotypes Generated in vitro . European Journal of Clinical Medicine, 3(4), 21–29. https://doi.org/10.24018/clinicmed.2022.3.4.225