##plugins.themes.bootstrap3.article.main##

Background: There are a variety of polymorphonuclear neutrophil phenotypes described in different species and health or disease situations. 

Objective: Study human neutrophil phenotypes generated in vitroMethods: Heparinized human blood samples were collected with ethical consent. Polymorphonuclear neutrophils purification and autologous cultures was performed. Neutrophil stimulation was performed with LPS, fMLP or OVA. Immunofluorescence was applied. 

Results: “Polymorphonuclear neutrophil-antigen presenting cell” profile was generated in vitro, expressing CD80, CD86 and HLA-DR molecules. Immunofluorescence analysis show: CD80 expression, significant differences between CTFT control and CTFT fMLP (p<0.05), CTFT control and CTFT OVA (p<0.0001). CD86 expression, significant differences between CTFT control and CTFT fMLP (p<0.05), CTFT control and CTFT LPS (p<0.05), CTFT control and CTFT OVA (p<0.0001). HLA-DR expression, significant differences between CTFT control and CTFT LPS (p<0.05). About “Polymorphonuclear neutrophil-CD4-CD45RO” profile, analysis show: CD4 expression, significant differences between CTFT control and CTFT fMLP (p<0.05). CD45RO expression, no significant differences. “Polymorphonuclear neutrophil-antigen presenting cell” phenotype, released NETs with CD80, CD86 at 30 minutes: paired control samples (7.4%), stimulated with LPS (12.69%), fMLP (16.67%) and OVA (18.47%). HLA-DR expression in NETs, at 30 minutes, in paired control samples (0%), stimulated with LPS (16.17%). At 17 hs, in paired control samples (0%), with OVA stimulation (4.54%). “Polymorphonuclear neutrophil-CD4-CD45RO” phenotype, released NETs expressing CD4 and C45RO molecules. At 30 minutes, in paired control samples (0%), stimulated with LPS (7.67%), fMLP (6.38%) and OVA (0%).

Conclusions: Molecules expressed by phenotypes can play a relevant role by influencing cellular microenvironment and can be taken into account as possible therapeutic targets.

References

  1. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil Extracellular Traps Kill Bacteria. Science. 2004; 303(5663): 1532–5.
     Google Scholar
  2. Takashima A, Yao Y. Neutrophil plasticity: acquisition of phenotype and functionality of antigen-presenting cell. J Leukoc Biol. 2015; 98: 1–8.
     Google Scholar
  3. Rodriguez FM, Novak ITC. What about the neutrophils phenotypes? Hematol Med Oncol. 2017; 2(3): 1–6.
     Google Scholar
  4. Hellebrekers P, Vrisekoop N, Koenderman L. Neutrophil phenotypes in health and disease. Eur J Clin Invest. 2018; 48: e12943.
     Google Scholar
  5. Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol. 2013; 17(3): 638–50.
     Google Scholar
  6. Lakschevitz FS, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016; 342(2): 200–9.
     Google Scholar
  7. Feuk-Lagerstedt E, Jordan ET, Leffler H, Dahlgren C, Karlsson A. Identification of CD66a and CD66b as the major galectin-3 receptor candidates in human neutrophils. J Immunol. 1999; 163(10): 5592–8.
     Google Scholar
  8. Makoni M, Eckert J, Anne Pereira H, Nizet V, Lawrence SM. Alterations in neonatal neutrophil function attributable to increased immature forms. Early Hum Dev. 2016; 103: 1–7
     Google Scholar
  9. Khan SY, Kelher MR, Heal JM, Blumberg N, Boshkov LK, Phipps R, et al. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood. 2006; 108(7): 2455–62.
     Google Scholar
  10. Murphy K, Weaver C. Janeway’s Immunbiology. 9th ed. Garland Science, editor. New York, USA: Taylor and Francis Group; 2017.
     Google Scholar
  11. Smyth CM, Logan G, Boadle R, Rowe PB, Smythe JA, Alexander IE. Differential subcellular localization of CD86 in human PBMC-derived macrophages and DCs, and ultrastructural characterization by immuno-electron microscopy. Int Immunol. 2005; 17(2): 123–32.
     Google Scholar
  12. Sandilands GP, McCrae J, Hill K, Perry M, Baxter D. Major histocompatibility complex class II (DR) antigen and costimulatory molecules on in vitro and in vivo activated human polymorphonuclear neutrophils. Immunology. 2006; 119(4): 562–71.
     Google Scholar
  13. Sandilands GP, Ahmed Z, Perry N, Davison M, Lupton A, Young B. Cross-linking of neutrophil CD11b results in rapid cell surface expression of molecules required for antigen presentation and T-cell activation. Immunology. 2005; 114(3): 354–68.
     Google Scholar
  14. Ishikawa F, Miyazaki S. New biodefense strategies by neutrophils. Arch Immunol Ther Exp (Warsz). 2005; 53(3): 226–33.
     Google Scholar
  15. Iking-Konert C, Vogt S, Radsak M, Wagner C, Hänsch GM, Andrassy K. Polymorphonuclear neutrophils in Wegener’s granulomatosis acquire characteristics of antigen presenting cells. Kidney Int. 2001; 60(6): 2247–62.
     Google Scholar
  16. Cross A, Bucknall RC, Cassatella MA, Edwards SW, Moots RJ. Synovial Fluid Neutrophils Transcribe and Express Class II Major Histocompatibility Complex Molecules in Rheumatoid Arthritis. Arthritis Rheum. 2003; 48(10): 2796–806.
     Google Scholar
  17. Matsushima H, Geng S, Lu R, Okamoto T, Yao Y, Mayuzumi N, et al. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood. 2013; 121(10): 1677–89.
     Google Scholar
  18. Culshaw S, Millington OR, Brewer JM, McInnes IB. Murine neutrophils present Class II restricted antigen. Immunol Lett. 2008; 118(1): 49–54.
     Google Scholar
  19. Ostanin D V, Kurmaeva E, Furr K, Bao R, Hoffman J, Berney S, et al. Acquisition of antigen-presenting functions by neutrophils isolated from mice with chronic colitis. J Immunol. 2012; 188(3): 1491–502.
     Google Scholar
  20. Abdallah DSA, Egan CE, Butcher BA, Denkers EY. Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int Immunol. 2011; 23(5): 317–26.
     Google Scholar
  21. Biswas P, Mantelli B, Sica A, Malnati M, Panzeri C, Saccani A, et al. Expression of CD4 on human peripheral blood neutrophils. Blood. 2003; 101(11): 4452–6.
     Google Scholar
  22. Pulido R, Alvarez V, Mollinedo F, Sánchez-Madrid F. Biochemical and functional characterization of the leucocyte tyrosine phosphatase CD45 (CD45RO, 180 kD) from human neutrophils. In vivo upregulation of CD45RO plasma membrane expression on patients undergoing haemodialysis. Clin Exp Immunol. 1992; 87(2): 329–35.
     Google Scholar
  23. Lucey DR, Dorsky DI, Nicholson-Weller A, Weller PF. Human eosinophils express CD4 protein and bind human immunodeficiency virus 1 gp120. J Exp Med. 1989; 169(1): 327–32.
     Google Scholar
  24. Zauli G, Furlini G, Vitale M, Re MC, Gibellini D, Zamai L, et al. A subset of human CD34+ hematopoietic progenitors express low levels of CD4, the high-affinity receptor for human immunodeficiency virus-type 1. Blood. 1994; 84(6): 1896–905.
     Google Scholar
  25. Louache F, Debili N, Marandin A, Coulombel L, Vainchenker W. Expression of CD4 by human hematopoietic progenitors. Blood. 1994; 84(10): 3344–55.
     Google Scholar
  26. Lusso P, De Maria A, Malnati M, Lori F, DeRocco SE, Baseler M, et al. Induction of CD4 and susceptibility to HIV-1 infection in human CD8+ T lymphocytes by human herpesvirus 6. Nature. 1991; 349(6309): 533–5.
     Google Scholar
  27. Lusso P, Malnati MS, Garzino-Demo A, Crowley RW, Long EO, Gallo RC. Infection of natural killer cells by human herpesvirus 6. Nature. 1993; 362(6419): 458–62.
     Google Scholar
  28. Li Y, Li L, Wadley R, Reddel SW, Qi JC, Archis C, et al. Mast cells/basophils in the peripheral blood of allergic individuals who are HIV-1 susceptible due to their surface expression of CD4 and the chemokine receptors CCR3, CCR5, and CXCR4. Blood. 2001; 97(11): 3484–90.
     Google Scholar
  29. Lusso P, Garzino-Demo A, Crowley RW, Malnati MS. Infection of gamma/delta T lymphocytes by human herpesvirus 6: transcriptional induction of CD4 and susceptibility to HIV infection. J Exp Med. 1995; 181(4): 1303–10.
     Google Scholar
  30. Rheinländer A, Schraven B, Bommhardt U. CD45 in human physiology and clinical medicine. Immunol Lett. 2018; 196: 22–32.
     Google Scholar
  31. Abbas AK, Lichtman AH, Pillai S. Inmunología celular y molecular. 7th ed. Barcelona, España: Elsevier; 2012. Spanish.
     Google Scholar
  32. Yu CL, Yu HS, Sun KH, Hsieh SC, Tsai CY. Anti-CD45 isoform antibodies enhance phagocytosis and gene expression of IL-8 and TNF-α in human neutrophils by differential suppression on protein tyrosine phosphorylation and p56lck tyrosine kinase. Clin Exp Immunol. 2002; 129(1): 78–85.
     Google Scholar
  33. Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation. Front Immunol. 2016; 7: 302.
     Google Scholar
  34. Sollberger G, Tilley DO, Zychlinsky A. Neutrophil Extracellular Traps: The Biology of Chromatin Externalization. Dev Cell. 2018; 44(5): 542–53.
     Google Scholar
  35. Van Avondt K, Hartl D. Mechanisms and disease relevance of neutrophil extracellular trap formation. Eur J Clin Invest. 2018; 48 Suppl 2: e12919.
     Google Scholar
  36. Rodriguez FM, Novak ITC. Costimulatory Molecules CD80 and CD86 Colocalized in Neutrophil Extracellular Traps (NETs). J Immunol Infect Dis. 2016; 3(1): 1–9.
     Google Scholar
  37. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open source platform for biological image analysis. Nat Methods. 2012; 9(7): 676–82.
     Google Scholar
  38. Schneider C a, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012; 9(7): 671–5.
     Google Scholar
  39. Potapova TA, Sivakumar S, Flynn JN, Li R, Gorbsky GJ. Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Mol Biol Cell. 2011; 22(8): 1191–206.
     Google Scholar
  40. McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A. Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle. 2014; 13(9): 1400–12.
     Google Scholar
  41. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat versión 2020. Centro de Transferencia InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Argentina; 2020. Available from: http://www.infostat.com.ar. Spanish.
     Google Scholar
  42. Kubes P. The enigmatic neutrophil: what we do not know. Cell Tissue Res. 2018; 371(3): 399–406.
     Google Scholar
  43. Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on neutrophil function in severe inflammation. Front Immunol. 2018; 9(OCT): 1–14.
     Google Scholar
  44. Brinkmann V. Neutrophil Extracellular Traps in the Second Decade. J Innate Immun. 2018; 10(5–6): 414–21.
     Google Scholar
  45. Sørensen OE, Borregaard N. Neutrophil extracellular traps - The dark side of neutrophils. J Clin Invest. 2016; 126(5): 1612–20.
     Google Scholar
  46. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017; 23(3): 279–87.
     Google Scholar
  47. Kimball AS, Obi AT, Diaz JA, Henke PK. The emerging role of NETs in venous thrombosis and immunothrombosis. Front Immunol. 2016; 7: 1–8.
     Google Scholar
  48. Laridan E, Martinod K, De Meyer SF. Neutrophil Extracellular Traps in Arterial and Venous Thrombosis. Semin Thromb Hemost. 2019; 45(1): 86–93.
     Google Scholar
  49. Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019; 133(20): 2178–85.
     Google Scholar
  50. Knight JS, Carmona-Rivera C, Kaplan MJ. Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front Immunol. 2012; 3: 1–12.
     Google Scholar
  51. Apel F, Zychlinsky A, Kenny EF. The role of neutrophil extracellular traps in rheumatic diseases. Nat Rev Rheumatol. 2018; 14(8): 467–75.
     Google Scholar
  52. Li Y, Wang W, Yang F, Xu Y, Feng C, Zhao Y. The regulatory roles of neutrophils in adaptive immunity. Cell Commun Signal. 2019; 17(1): 1–11.
     Google Scholar
  53. Li Y, Zhu L, Chu Z, Yang T, Sun H-X, Yang F, et al. Characterization and biological significance of IL-23-induced neutrophil polarization. Cell Mol Immunol. 2018; 15(5): 518–30.
     Google Scholar
  54. Sun B, Zhu L, Tao Y, Sun H-X, Li Y, Wang P, et al. Characterization and allergic role of IL-33-induced neutrophil polarization. Cell Mol Immunol. 2018; 15(8): 782–93.
     Google Scholar
  55. Xu Y, Zhang Q, Zhao Y. The functional diversity of neutrophils and clustered polarization of immunity. Cell Mol Immunol. 2020; 17(11): 1212–4.
     Google Scholar
  56. Vono M, Lin A, Norrby-Teglund A, Koup RA, Liang F, Loré K. Neutrophils acquire the capacity for antigen presentation to memory CD4+ T cells in vitro and ex vivo. Blood. 2017; 129(14): 1991–2001.
     Google Scholar
  57. Lok LSC, Dennison TW, Mahbubani KM, Saeb-Parsy K, Chilvers ER, Clatworthy MR. Phenotypically distinct neutrophils patrol uninfected human and mouse lymph nodes. Proc Natl Acad Sci U S A. 2019; 116(38): 19083–9.
     Google Scholar
  58. Liles WC, Ledbetter JA, Waltersdorph AW, Klebanoff SJ. Cross-linking of CD45 enhances activation of the respiratory burst in response to specific stimuli in human phagocytes. J Immunol. 1995; 155(4): 2175–84.
     Google Scholar
  59. Harvath L, Balke JA, Christiansen NP, Russell AA, Skubitz KM. Selected antibodies to leukocyte common antigen (CD45) inhibit human neutrophil chemotaxis. J Immunol. 1991; 146(3): 949–57.
     Google Scholar
  60. Gao H, Henderson A, Flynn DC, Landreth KS, Ericson SG. Effects of the protein tyrosine phosphatase CD45 on FcgammaRIIa signaling and neutrophil function. Exp Hematol. 2000; 28(9): 1062–70.
     Google Scholar
  61. Bourguignon LYW, Suchard SJ, Nagpal ML, Glenney JR. A t-lymphoma transmembrane glycoprotein (gp180) is linked to the cytoskeletal protein, fodrin. J Cell Biol. 1985; 101(2): 477–87.
     Google Scholar
  62. Petretto A, Bruschi M, Pratesi F, Croia C, Candiano G, Ghiggeri G, et al. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One. 2019; 14(7): 1–18.
     Google Scholar
  63. Yu Y, Koehn CD, Yue Y, Li S, Thiele GM, Hearth-Holmes MP, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015; 15(4): 401–10.
     Google Scholar
  64. Kamoshida G, Kikuchi-Ueda T, Nishida S, Tansho-Nagakawa S, Kikuchi H, Ubagai T, et al. Spontaneous formation of neutrophil extracellular traps in serum-free culture conditions. FEBS Open Bio. 2017; 7(6): 877–86.
     Google Scholar
  65. Maletto BA, Ropolo AS, Alignani DO, Liscovsky M V., Ranocchia RP, Moron VG, et al. Presence of neutrophil-bearing antigen in lymphoid organs of immune mice. Blood. 2006; 108(9): 3094–102.
     Google Scholar
  66. Castell SD, Harman MF, Morón G, Maletto BA, Pistoresi-Palencia MC. Neutrophils Which Migrate to Lymph Nodes Modulate CD4+ T Cell Response by a PD-L1 Dependent Mechanism. Front Immunol. 2019; 10(JAN): 105.
     Google Scholar
  67. Cunha AA Da, Porto BN, Nuñez NK, Souza RG, Vargas MHM, Silveira JS, et al. Extracellular DNA traps in bronchoalveolar fluid from a murine eosinophilic pulmonary response. Allergy Eur J Allergy Clin Immunol. 2014; 69(12): 1696–700.
     Google Scholar
  68. Rodriguez FM, Novak ITC. May NETs Contain Costimulatory Molecules? J Immunobiol. 2016; 01(04): 113.
     Google Scholar
  69. Horn LA, Long TM, Atkinson R, Clements V, Ostrand-Rosenberg S. Soluble CD80 protein delays tumor growth and promotes tumor infiltrating lymphocytes. Cancer Immunol Res. 2017; 6(1): 59–68.
     Google Scholar
  70. Marín LA, Moya-Quiles MR, Miras M, Minguela A, Bermejo J, Ramírez P, et al. Evolution of soluble forms of CD86, CD95 and CD95L molecules in liver transplant recipients. Transpl Immunol. 2012; 26(2–3): 94–100.
     Google Scholar
  71. Simone R, Pesce G, Antola P, Rumbullaku M, Bagnasco M, Bizzaro N, et al. The soluble form of CTLA-4 from serum of patients with autoimmune diseases regulates T-cell responses. Biomed Res Int. 2014; 2014: 1–9.
     Google Scholar
  72. Wong CK, Lit LCW, Tam LS, Li EK, Lam CWK. Aberrant production of soluble costimulatory molecules CTLA-4, CD28, CD80 and CD86 in patients with systemic lupus erythematosus. Rheumatology. 2005; 44(8): 989–94.
     Google Scholar
  73. Jendro M, Goronzy JJ, Weyand CM. Structural and functional characterization of hla-dr molecules circulating in the serum. Autoimmunity. 1991; 8(4): 289–96.
     Google Scholar
  74. Bakela K, Athanassakis I. Soluble major histocompatibility complex molecules in immune regulation: highlighting class II antigens. Immunology. 2018; 153(3): 315–24.
     Google Scholar
  75. Joly E, Hudrisier D. What is trogocytosis and what is its purpose? Nat Immunol. 2003; 4(9): 815.
     Google Scholar
  76. Berthelot J-M, Le Goff B, Neel A, Maugars Y, Hamidou M. NETosis: At the crossroads of rheumatoid arthritis, lupus, and vasculitis. Jt bone spine. 2017; 84(3): 255–62.
     Google Scholar
  77. Haim H, Si Z, Madani N, Wang L, Courter JR, Princiotto A, et al. Soluble CD4 and CD4-mimetic compounds inhibit HIV-1 infection by induction of a short-lived activated state. PLoS Pathog. 2009; 5(4): 1–14.
     Google Scholar
  78. Mitchell GB, Khandaker MH, Rahimpour R, Xu L, Lazarovits AI, Pickering JG, et al. CD45 modulation of CXCR1 and CXCR2 in human polymorphonuclear leukocytes. Eur J Immunol. 1999; 29(5): 1467–76.
     Google Scholar
  79. Mantovani A, Cassatella M, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011; 11(8): 519–31.
     Google Scholar
  80. Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015; 10(4): 562–73.
     Google Scholar